Ветряк для частного дома — игрушка или реальная альтернатива. Ветряные электростанции и электрогенераторы Мощность ветряной электростанции для дома

Ветро-электрические установки (ВЭУ) преобразовывают энергию перемещения атмосферных масс, которая в той или иной мере имеется в наличии в любой точке земного шара, непосредственно в электричество. Именно на этом основывается положительный экономический и экологический эффект от использования ветровых турбин.

Преимущества ветровой энергетики

Современные технологические решения позволяют производить ветровые генераторы мощностью от нескольких КВт до сотен МВт . То есть ВЭУ могут обеспечивать электроэнергией, как целые промышленные районы, так и отдельные жилые коттеджи. Кроме чисто экономических преимуществ ветряная энергетика имеет еще одно неоспоримое преимущество – она оказывает значительно более низкое давление на экологию и биосферу Земли. Поэтому на авторитетном сайте «Альтернативная энергетика» (http://altenergiya.ru/) справедливо подтверждается глубокие мысли Вернадского В. В., высказанные еще в средине ХХ века:

…продажи ветряных электростанций небольшой мощности, которые способны использовать энергию ветра практически в любых регионах (даже там, где недостаточно силы ветра для промышленного использования), постоянно возрастают. Прогнозируется, что подобные альтернативные источники энергии будут применяться все шире, как в государственном, так и частном порядке, пока окончательно не вытеснят традиционную энергетику, основанную на органическом топливе

К экономическим плюсам бытовой ветряной энергетики (установки, мощностью 3 – 15 КВт) можно отнести следующие факторы:

  • Неисчерпаемость источника энергии;
  • Экологическая чистота энергии;
  • Быстрота возведения ветряной установки;
  • Короткий срок окупаемости капитальных вложений;
  • Не требуется специальных площадок для монтажа оборудования.

Недостатком небольших ВЭУ является практически один фактор — прямая зависимость вырабатываемой мощности от напора воздушного потока, который в большинстве регионов Земли не отличаются стабильностью. Поэтому для стабильного и качественного энергоснабжения бытовой техники требуется такое дополнительное оборудование, как аккумуляторы и полупроводниковые выпрямительные установки .

Изучение энергетического потенциала территории

Заглядывая в будущее ХХI столетие, безальтернативность пути развития ветровой энергетики очевидна. Потому в передовых странах проводятся исследования потенциала территорий на предмет использования их для возведения крупных ВЭУ.

Станции альтернативной энергетики обычно занимают большие площади. Соответственно в первую очередь обращается внимание на такие местности, которые даже в далекой перспективе не могут быть вовлечены в другую экономическую деятельность:

  • Пустыни;
  • Горные возвышенности;
  • Шельфовые зоны;
  • Прибрежные зоны морей и океанов, и другие.

В частности, на популярном интернет ресурсе windypower.blogspot.com/p/blog-page_8642.html дается такая информация:

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного-двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты потенциальным инвесторам оценить скорость окупаемости проекта

Мощности промышленных ветровых электростанций

Промышленные ВЭУ бывают самой разной мощности в зависимости от энергетического потенциала конкретной территории. Современные технологии позволяют массово производить даже не стандартизированное генераторное оборудование со сроком окупаемости 3 – 5 лет .

На сегодня самая крупная наземная ВЭС расположена на перевале Техачапи, что в Калифорнии. Ее полная мощность, соизмеримая с мощностью крупных тепловых электростанций, уже ныне составляет 1550 МВт . В дальнейшем планируется довести установленную мощность ВЭС АЛЬТА до 3000 МВТ. На ней используются ветровые турбины 1.5 и 3.0 МВт.

Державы, которые владеют большими шельфовыми зонами, активно развивают шельфовою ветроэнергетику. В этой области лидируют Дания и Великобритания. Такие ВЭУ устанавливаются в 10 – 50 км от берега в море с небольшими глубинами и отличаются большой эффективность, потому что там дуют постоянные морские ветра. Самой большой ВЭС среди эксплуатируемых в шельфовых зонах мира является великобританская станция London Array с рабочей мощность в 630 МВт.

Развиваются также такие экзотические типы ВЭС, как плавающие и парящие. Пока что это установки с одним или не большой группой генераторов мощностью по 40 – 100 КВт каждый. Но со временем планируется довести мощность агрегатов на плавающих электростанциях до 6.3 МВт. В частности к таким мощностям уже вплотную подошли датские и итальянские фирмы.

ВЭС для обеспечения электричеством коттеджей и объектов малого бизнеса и цены на них.

Для того, чтобы полностью покрыть нужды загородного дома, не большой фермы, ресторана или маркета, достаточно иметь установку мощностью в 20 или даже меньше КВт. Для жилого дома, например, номинальная мощность генератора выбирается с расчета 1КВт на 12 м2 площади, если зимняя температура не опускается ниже 18С при среднесуточной скорости ветра 6.3 м/с и более.

Стоимость электростанции для бытовых нужд и малого бизнеса зависит от номинальной мощности электрогенератора и составляет около 50 тыс. рублей на 1 КВт для ВЭС до 3 КВт, 40 тыс. рублей/КВт – для ВЭС до 10 КВт и около 30 тыс. рублей/КВт – для ВЭС свыше 10 КВт.

Окупаемость автономной электростанции составляет в пределах 5 – 7 лет, так 1 КВт установленной номинальной мощности генератора за год может выработать столько энергии, которая эквивалентна сжиганию 2 тонн высококачественного угля . В частности ВЭУ «ЭСО-0020» номинальной электрической мощностью 20 кВт, представленная на сайте «Учебные материалы ВГУЭС (http://abc.vvsu.ru/) имеет следующие параметры:

  • Себестоимость электроэнергии – 0.02 долл. / КВтч;
  • Годовая выработка эл. энергии — более 70000 КВтч;
  • Срок окупаемости – до 7 лет;
  • Срок службы – 20 лет.

Видео

Сокращение объёма доступных полезных ископаемых заставляет человечество искать возобновляемые источники энергии. Один из них - это ветер. Его механическая сила оказалась достаточной для того, чтобы приводить в движение машинные генераторы энергии. На этой основе созданы и функционируют ветряные электростанции.

Конструкция сооружения

Конструкция включает в себя несколько приводимых движением воздушных потоков генераторов, каждый из которых состоит из крыльчатки с большими лопастями, редуктора и электрической машины. Вся энергия передаётся по предназначенным для этого кабелям. Ветряки ставятся на очень высокие мачты для большей эффективности. Место их расположения всегда определяется на основании точных расчётов . Учитывается рельеф, сила и преобладающее направление ветра, после чего решается вопрос об окупаемости установки.

Решения для дома

Сегодня существуют ветро-генераторы и электростанции, рассчитанные для индивидуального пользования. Они обеспечивают экологически чистое питание вдали от централизированных источников. Более мощные устройства подойдут для электрификации больших зданий либо энергоснабжения отопительных систем.

Правильный выбор определяется сразу несколькими критериями:

  • Нагрузка на электросеть в моменты наибольшего потребления.
  • Направление и скорость ветра.
  • Более высокая мачта повышает частоту вращения лопастей.

Достоинства и недостатки

Одно из преимуществ - это безопасность для окружающей среды. Такой вид энергии является экологически чистым и поистине неисчерпаемым. Её выработка совершенно не причиняет вреда окружающей среде. Ветровые электростанции для дома отличаются простой конструкцией , потому их можно собрать своими руками. Они также обеспечивают стабильную выработку энергии, которая может накапливаться в аккумуляторных батареях и преобразовываться в 220 вольт.

Но также есть и недостатки - это привязанность к погодным условиям. В отличие от солнца, ветер дует непостоянно. Большие ветряные мельницы для электричества издают шум во время работы. Они также причиняют помехи телерадиооборудованию и летящим птицам.

Выбор подходящего устройства

Следует ориентироваться на потребление энергии всеми приборами, а также максимальную допустимую силу и скорость ветра. Например, ветряная установка при мощности - от 400 до 6400 ватт сможет обеспечить питание небольшого домика либо магазина или подобного сооружения вдали от основных источников.

Ещё одна особенность фабричных ветряков для выработки электроэнергии - очень высокая стоимость, от полмиллиона рублей до трёх.

Есть также альтернативные устройства, лишённые некоторых недостатков. Например, вертикальные ветряные электростанции для дома отличаются высокой эффективностью и простотой монтажа. Другие преимущества заключаются в устойчивости к сильным порывам ветра и безразличности к его направлению, а также в защищённости от разрядов молний. Такие конструкции не портят ландшафт и не препятствуют перемещению птиц.

Ещё одно интересное и высокоперспективное решение - парусный генератор. Его главное преимущество - способность работать даже при слабом ветре. Именно благодаря парусу такая электростанция быстро и точно подстраивается под источник энергии, обеспечивая более устойчивую её генерацию. Она также отличается бесшумной и стабильной работой .

Его можно сделать, если имеются необходимые материалы и навыки. Для изготовления простого вертикального генератора понадобятся:

  1. Для крыльчатки - фанера, кровельное железо или листовой пластик небольшой толщины.
  2. Для крестовины сгодятся стальные полосы либо дерево.
  3. Ось можно сделать из железной трубы подходящего диаметра и длины.

Вначале следует приварить металлическую крестовину крыльчатки к верхнему концу оси. Деревянную можно приклеить или прикрепить штифтами. Для изготовления лопастей также потребуются «щёки» полукруглой формы, которые можно смастерить из тонкой фанеры, пластика или лёгкого металла. На них надо надеть сделанные ранее пластины, а места стыков следует промазать масляной краской.

Станина изготавливается из прикреплённых к жёсткому основанию металлических или деревянных уголков, к которым крепятся шарикоподшипники. Конструкцию следует собирать тщательно, чтобы избежать перекосов. К нижнему концу оси прикрепляется шкив, через который вращение передаётся самому генератору. Его роль может сыграть, например, асинхронный двигатель с неодимовыми магнитами, встроенными в ротор. Такой ветряк будет обеспечивать выработку мощности - до 800 ватт при скорости ветра - около 9−10 метров в секунду.

В тех случаях, когда необходимо обеспечить ветряной энергией целую семью, следует объединять несколько генераторов в одну систему, которую также нужно оснастить резервным источником.

Стоит ли покупать ветрогенератор для дома? В регионах с повышенной ветреностью - это хорошее решение для получения энергии. Преимущества: бесплатно, экологически чисто, доступно, не требует топлива. Недостатки: непостоянство источника, шумно, долго окупается, цена.

Составляющие и принцип работы

Принцип ветрогенератора заключается в преображении кинетической энергии ветра в электрический ток. Поток воздуха приводит в движение крылья установки. Внутри турбины электромагнитная система преобразует полученную активность в электричество, которое аккумулируется в батарее.

С помощью инвертора ток из постоянного преобразуется в переменный. Затем он используется в быту и распределяется в доме.

Основными составляющими системы являются:

  • генератор;
  • лопасти;
  • мачта;
  • контроллер;
  • аккумуляторная батарея;
  • инвертор;
  • автоматический переключатель источника питания.

Дополнительно также может устанавливаться анемоскоп и датчик направления ветра. В домашних условиях могут не использоваться, чаще используется в станциях средней и большой мощности, в производственных масштабах.


Составляющие ветрогенератора

Генератор

Турбина установки вырабатывает переменный ток. С его помощью активность, получаемая от вращения крыльев, преобразуется в электричество. Электромагнитная установка внутри с помощью механического движения магнитов влияет на движение электронов в катушках.

Ток, которые вырабатывается в ходе этого взаимодействия, с помощью контроллера передается на аккумуляторную батарею. Количество вырабатываемой энергии зависит от скорости и силы, стабильности ветрового потока.

Лопасти

На мощность турбины влияет размер этих деталей.

При расчете для установки в доме, фиксируют потребление электричества в месяц. Умножают эту цифру на 12. При потреблении дома в 3600 кВт (300 в месяц) в регионе со средним значением – 5 м/с необходимо использовать длину не меньше 4 м.

AOE = (V3*D2)/7000 (кВт)

D – диаметр ветроколеса ротора,

AOE – сумма потребляемой энергии в год,
V – средняя скорость ветра в регионе.

Если же размер необходимо уменьшить, тогда нужен аппарат с большей мощностью. С помощью формулы можно посчитать (с погрешностью 20%) какую энергию можно получить. Необходимо умножить квадрат диаметра лопастей на куб средней скорости потоков, далее разделить полученное значение на 7000.

То есть если скорость в вашей местности приблизительно 4 м/с, а диаметр деталей 2 метра, тогда (4 3 *2 2)/7000=0,036 кВт электричества получится. Если ветер усилится до 5 м/с, тогда получится 0,071 кВт. Если средняя скорость ветра неизменна, тогда можно на мощность повлиять с помощью длины лопастей.

Если их длинна в два раза больше, тогда при той же скорости мощность увеличивается в 4 раза. Эти расчеты можно использовать при изготовлении станции своими руками.

В таблице представлены данные по расчетам:

Скорость ветра м/с
1 2 3 4 5 6 7
диаметр лопастей (м) 2 0,0005714 0,0045714 0,0154286 0,0365714 0,0714286 0,1234286 0,1960000
3 0,0012857 0,0102857 0,0347143 0,0822857 0,1607143 0,2777143 0,4410000
4 0,0022857 0,0182857 0,0617143 0,1462857 0,2857143 0,4937143 0,7840000

Турбина производительностью до 700 Ватт в месяц, с начальной скоростью ветра 2,5 м/с, и номинальной – 8, может выработать 120 кВт электричества при средней скорости - 6. Размер лопастей - 2,7 метра, количество - 3 шт. А налог при мощности от 0-1600 Вт даст месячную выработку в 230 кВт.

Самый распространенный это генератор мощностью 3000 Ватт с 3-мя крылами длинной 3,2 м. Его хватает, чтобы выработать 480 кВт, при скорости 6 м/с. Этого количества достаточно для обеспечения частного дома.

Мачта

Высота мачты влияет на высоту размещения источника получения тока. Чем выше, тем сила ветра стабильнее, а скорость выше. Мачты бывают различной формы. Одним из ключевых факторов безопасности установки является материал, из которого сделана мачта. При сильном ветре или урагане основная нагрузка приходится на эту часть. Опоры должны быть прочными и выдерживать большие нагрузки. Обслуживать высокие мачты проблематично.

Лучше всего для мачт подходят металлические жесткие трубы с сечением не меньше 11 см. Их устанавливают высотой от 5 до 7 м. При установке мачты из стальной трубы, необходимо сделать фундамент с диагональю вдвое превышающую высоту мачты. Для растяжек используют тросы не меньше 6 миллиметров в толщину с оцинковкой.

Так называемые фермные мачты имеют отдельные секции, которые изготавливаются из опорной трубы (обычно 3 штуки), соединенные между собой перемычками. Такие секции удобно использовать в дальнейшем, если необходимо увеличить или уменьшить высоту мачты. Они крепятся на болты, которые можно раскручивать и добавлять новые секции.

При установке мачты нужно учесть объекты на расстоянии до 300 метров, ветряк должен располагаться таким образом, чтобы они находились на метр ниже турбины. Ничто не должно мешать получить максимальную продуктивность.


Контроллер

Устанавливается для управления процессами и функциями. Этот механизм преобразовывает переменный ток в постоянный, который поступает на аккумуляторы. Также в контроллере осуществляется управление функциями поворота лопастей, защиты при сильном порывистом ветре.

Аккумуляторы

Батареи нужны для того, чтобы сохранять электричество, которое передает контроллер, и стабилизировать её. Напряжение, выходящее из батарей, стабильное и постоянное, в отличие от того, которое выходит из генератора. Также аккумуляторы позволяют использовать энергию, когда вращение отсутствует, и установка не работает.

Инвертор

Инверторы подразделяются на четыре вида:

  • трехфазный,
  • сетевой,
  • чистая синусоида,
  • модифицированная синусоида.

Трехфазный преобразует ток с напряжением 380 Вольт, подходит для использования оборудования на производстве. Сетевой инвертор позволяет установки работать без аккумуляторной батареи, однако стоимость такого инвертора в разы превышает даже стоимость самой ВЭУ.

Чистая синусоида подходит для любого типа электроприборов (медицинское, сетевое и другое оборудование) напряжение переменного тока 220 вольт. Модифицированная синусоида пригодна, при нечувствительном потреблении к качеству напряжения. Этим она отличается от чистой. Подходит для освещения, заряда устройств, обогревательных приборов и т.п.

Автоматический переключатель источника питания

АВР используют, если в электросети задействованы также , генераторы топлива, общественная сеть, другие альтернативные источники питания. Эта установка переключает источники питания, если один из них недоступен. Он может работать только с одним источником.

Виды ветряных электростанций

Существует несколько видов в промышленных масштабах по типу размещения: наземные, прибрежные, шельфовые, плавающие, парящие, горные.

В бытовом использовании более важными являются типы конструкций:

  • По количеству лопастей разделяют на двух, трёх и многолопастные ветрогенераторы.
  • По направлению оси вращения разделяются на вертикальные или горизонтальные. Преимуществом вертикальных является повышенная устойчивость конструкции. Преимуществом горизонтальных является большая выработка энергии.
  • Также разделяют по управлению шагом лопасти. Изменяемый позволяет регулировать диапазон рабочей скорости вращения крыльев. Но конструкция с таким типом дороже, тяжелее. Для использования в домашних условиях лучше брать с фиксированным шагом.
  • По типу изготовления материалов крыла бывают парусные или жесткие. Первые стоят дешевле, их проще изготовить самому, однако прочность их меньше, чем у жестких. Вторые изготавливают в основном из металла, пластика, стеклопластика. Такие лопасти служат дольше, и не требует частой замены. Если в районе ветра сильные, использовать парусные нерационально.
  • Спиралевидные. Недавно разработаны технологии, в которых используются спиралевидные, известные как ротор Онипко. Принцип их конструкции позволяет снизить шум, а также получить выработку энергии на самых низких высотах при минимальных потоках. Особая конструкция спиралевидной формы также позволяет избежать столкновения с птицами – частой проблемой ветряков. За счет увеличенной площади контакта с ветром, у спиральной конструкции появляется эффект увеличения и усиления мощности. Хвостовой стабилизатор отсутствует, поскольку ротор улавливает поток воздуха самостоятельно на горизонтальной оси. Могут изготавливаться из различных материалов (пластик, металл и др.). В Голландии подобные решения уже испытывают, турбина называется LiamF1. Они очень практичны в условиях небольшой скорости ветра. Такие конструкции могут вырабатывать от 125 до 200 кВт в месяц на максимальной мощности. Их размер не превышает полтора метра в диаметре, может быть поставлен на крыше дома или мачте. При этом показатель шума не превышает 45 децибел. Такая конструкция будет уместна, как дополнительный источник энергии в небольших городах с преимущественно низкими постройками.


Что нужно учесть при выборе

В первую очередь необходимо изучить карту ветров региона, чтобы понять целесообразность. Затем необходимо сделать расчёт количества потребляемой энергии домом. Исходя из этих цифр, уточняется какой аппарат, с каким размером лопастей подойдет для обеспечения данного запроса.

Также необходимо учитывать климатические особенности и выбрать правильный вид установки. В зонах повышенной турбулентности ставят агрегат с вертикальным вращением, эти конструкции более устойчивы и долговечны в таких зонах.

Горизонтальные проявят себя лучше на открытой местности или возвышенности, а также на побережье. Однако, шум, производимый этими установками, возможно, будет мешать соседям, поэтому устанавливать их стоит на открытой местности, такой как поле. В этих условиях КПД горизонтальных выше, чем у вертикальных.

Спиралевидные конструкции позволено устанавливать в регионах с низким показателем скорости ветра, а также в густонаселенных пунктах. Такие конструкции почти не издают шум (до 45 ДБ), безопасные для птиц, не занимают большие площади.

Ветрогенераторы часто используют как дополнительный источник энергии, в домах с установленной солнечной батареей. В комплексе два этих источника могут полностью обеспечить автономной энергией частные дома.

Изучив все вышеперечисленные критерии, стоит рассчитать экономический показатель окупаемости установки. За какой период времени установка окупится согласно действующим тарифам на электроэнергию. Даже при долгом сроке окупаемости от 5 лет важно отметить, что этот источник энергии в будущем не потребляет никакого топлива.


Устройство ветрогенератора

Цены

Цены на товары с различной мощностью зависят от производителя, комплекта поставки (генератор, аккумуляторы, инвертор и др.). Ценовые предложения колеблются в показателях:

  • 0,5 кВт – 40-90 тыс. руб.,
  • 1 кВт – 92-113 тыс. руб.,
  • 2 кВт – 111-150 тыс. руб.,
  • 3 кВт – 125 -195 тыс. руб.,
  • 5 кВт – 282- 285 тыс. руб.

Замечания при строительстве своими руками

Если цены на ветряки слишком дорогие, можно сделать конструкцию своими руками. Чаще всего для экономии используют либо генератор от автомобиля, либо от стиральной машины. При использовании таких аппаратов чаще всего выбирают горизонтальный тип установки, в котором применяют 3-6 лопастей.

Важно учитывать расчёты указанные выше. Детали годятся из трубы ПВХ - доступны в любом строительном магазине, зачастую берут трубы для водоотведения канализации.

Готовые лопасти насаживают с помощью шкива на вал электродвигателя. С помощью деревянного бруса монтируют хвост и крепят с другой стороны вал. Для хвоста лучше взять лист алюминия. Бокс турбины нужно защитить от дождя либо кожухом, либо куском пластиковые трубы.

В нижней части устанавливается труба, которая в дальнейшем будет выполнять повороты механизма. Для мачты стоит использовать металлические трубы диаметром 32 миллиметра по длине от 3 до 4 метров.

Верхняя часть мачты является также поворотной втулкой, куда вставляется труба с двигателем. Внизу необходимо сделать опору с диаметром не меньше 60 сантиметров. На этой опоре установить U-образную трубопроводную арматуры посредине. Чтобы мачту получилось опускать, необходимо поставить тройник с поворотом.

Для изготовления электронных схем необходимы специальные знания, поэтому при отсутствии таковых следует купить контроллер и аккумуляторы. При необходимости также можно , этот прибор будет отслеживать напряжение, выходящее из ветрогенератора и поступающее на батарею. Электроника требует защиты от дождя и ветра. Лучше использовать удлинитель и перенести этот блок в защищенное место.


Устанавливать или нет

Целесообразность использования данного типа установок всегда очень индивидуально. Однозначно стоит устанавливать такой вид источника энергии в тех местах, где нет доступа к другим вариантам. Хорошо будет работать установка на прибрежных зонах или на холмах. В этих районах доступ к источнику энергии почти постоянный, поэтому даже покупка дорогой электростанции оправдает себя через несколько лет.

В условиях домашнего использования в средней полосе, где показатели ветра в среднем 4-6 м/с нужно учитывать ближайшие постройки. В деревне, где постоянно происходят перебои с электричеством, можно рассматривать ветряки как дополнительные станции.

Они помогут экономить, и получать электроэнергию, когда основной ресурс недоступен. При использовании крупных горизонтальных ветряков с большими лопастями нерационально ставить их в тех районах, где густонаселенные пункты.

В таких условиях лучше подойдут вертикальные генераторы или спиралевидные. Они не производят много шума. Их можно устанавливать даже в частных домах с близким соседством. Однако в этом случае ближайшие постройки могут влиять на производительность станции.

Проблему можно решить, дополнив сеть солнечными батареями. В комплексе два этих источника могут полностью обеспечить жилой дом электроэнергией.

Покупать или сделать своими руками - вопрос чисто финансовой стороны. Если есть средства на готовую установку, можно смело вкладывать в будущее, поскольку это вложение окупится в ближайшие годы.

Если же денег на покупку дорогого оборудования нет, но есть возможность собрать генератор своими руками, однозначно советуем установить ветряк дома самому. Он позволит сэкономить как минимум треть потребляемой энергии.

  1. Генераторы от автомобиля нуждаются в перемотке катушек.
  2. Любую мачту необходимо устанавливать на фундамент, поскольку она имеет большую массу и будет подвержена серьезным нагрузкам. Фундамент мачты должен быть не менее 1 м глубиной.
  3. Изготавливая лопасти самостоятельно важно проверить балансировку. Если крыло тянет вниз, его можно сточить или отшлифовать.
  4. При шторме или урагане должен быть предусмотрен механизм торможения. Чтобы конструкция не пострадала.
  5. Аккумуляторы выбираются согласно потреблению и расходу электричества в доме. В день затишья помещение не должно остаться без питания.
  6. Для долгого срока службы профилактика смазки подшипников необходима раз в 6 месяцев.
  7. После первых двух недель использования агрегата, обязательно проверяют крепеж и натяжения , поскольку при работе детали имеют свойство расшатываться, следует снять конструкцию проверить и закрепить заново.

Ветряная электростанция (ВЭС) — альтернативный экологичный источник энергии. ВЭС представляет собой несколько распределённых или сосредоточенных ветроэлектрических установок (ветрогенераторов или ВЭУ), соединённых в общую сеть (каскады). Крупнейшие ВЭС могут состоять из сотни и более ветрогенераторов, работающих как на собственные, так и на один общий энергоблок. Для ВЭС наиболее эффективны регионы со средней скоростью ветра более 4,5 м/с.

Россия располагает крупными ветроэнергитическими ресурсами, в сумме ветропотенциал страны оценивается приблизительно в 14000 ТВт час/год. Крупнейшая ветровая станция России — Зеленоградская ВЭУ (5,1 МВт), также отметим Анадырскую ВЭС, Заполярную и ВЭС Тюпкильды. Общая мощность работающих ВЭС России более 16,5 МВт. Кроме электрической, ветровая энергия используется в получении тепловой и механической энергий.

"Зеленоградская ВЭУ расположенна в районе посёлка Куликово Зеленоградского района Калининградской области.

ВЭУ преобразует кинетическую энергию воздушных потоков в механическую, которая используется для вращения ротора генератора электротока. Промышленные ВЭУ используются в построении ветряных электростанций. Их мощность может достигать 7,5 МВт, она зависит от конструкции ветряка, силы воздушного потока, плотности воздуха и площади обдуваемой поверхности. Промышленная ВЭУ обычно состоит из фундамента, силового шкафа управления, башни, лестницы, поворотного механизма, гондолы, электрогенератора, механизма слежения за параметрами ветра, тормозной системы, трансмиссии, лопастей, обтекателя, коммуникаций и системы защиты от молний. Ветротурбины бывают с вертикальной осью вращения (карусельные лопастные и т.д.) и горизонтально-осевые — кругового вращения, наиболее распространённые из-за простоты и высокого КПД.

Устройство ветрогенератора включает в себя ветротурбину (раскручиваемую лопастями или ротором) и электрогенератор. Полученное с генератора электричество обычно поступает на устройство управления аккумуляторами, после чего накапливается в аккумуляторах, и с помощью инвертора, подключённого в электросеть, преобразуется в переменный ток необходимой силы, частоты и напряжения (например: 50 Гц/220 В). ВЭУ на выходе электрорегулятора имеет 24, 48 или 96 вольт постоянного тока. Батареи аккумулятора накапливают энергию для использования в безветрие. Принципиальную электросхему взаимодействия ВЭУ с устройствами можно как угодно модифицировать и улучшать.

Типы ветровых электростанций.

Наземная — самый распространённый вид. Ветрогенераторы здесь размещены на возвышенностях (горы, холмы). Самой крупной ВЭС считается калифорнийская «Альта» в США с мощностью 1,5 ГВт. Ветрогенераторы на высоте более 500 м над уровнем моря - это горная разновидность наземных станций.

Шельфовая строится в море, в 10-60 км от берега. Даёт преимущество в отсутствии выделенных сухопутных территорий и высокую эффективность в силу постоянства морских ветров. В сравнении с наземной обладает большей дороговизной.

Крупнейшая станция «London Array» в Великобритании производит 630 МВт электроэнергии.

Прибрежная строится в прибрежных зонах морей и океанов, что обусловлено суточными морскими бризами.

Плавающая — сравнительно новый вид. Устанавливается на плавающей платформе на некотором удалении от берега.

Парящая, где ветровые турбины размещены высоко над землёй с целью использования более сильных и стойких воздушных потоков.

Преимущества ВЭУ:

  1. Дешевизна установки и обслуживания
  2. Отсутствие потребности в большом персонале
  3. Экологичность (даже при разрушении), отсутствие выбросов в атмосферу, нарушения экосистемы и ландшафта
  4. Восполняемость источника энергии
  5. Отсутствует нужда в специальной выделенной зоны вокруг станции
  6. Высокий уровень чистой прибыли владельцам в связи с высоким отношением современной стоимости электроэнергии к минимальным затратам на получение этой энергии

Недостатки ВЭУ:

  1. Высокий входной барьер в бизнес. Строительство ветряных ферм, точные расчёты определения местности, основывающиеся на многолетних показаниях
  2. Невозможность точного прогноза количества производимой энергии в силу стихийной природы ветра
  3. Малая мощность
  4. Высокий уровень шума, который может негативно влиять на окружающую среду (однако современные технологии позволяют добиться приближения уровня шума к уровню естественной среды уже в 30 метрах от турбины)
  5. Вероятность вреда для птиц и искажения телерадиосигналов

Проекты ветряных установок будущего:

Ветростебли вместо лопастей. Установка в проекте «зелёного» города без машин Масдара близ Абу-Даби. 1203 энергоэффективных стебля высотой 55 м на расстоянии друг от друга в 10-20 м будут «расти» из земли, покачиваться от ветра и генерировать таким образом энергию путём сжатия керамических дисков электродных слоёв.

Сверхмассивный ветряк Aerogenerator X отличается от классических ветряков своими внушительными размерами и выработкой энергии в 3 раза больше, чем обычный ветряк (10 МВт). Размах лопастей 275 м. Конструкция используется в ширину, а не ввысь. Ветряк вращается над морской гладью как карусель.

Норвежский город турбин на побережье Ставангер. Так как Евросоюз поставил цель обеспечения энергией хотя бы на 20% от природных сил, то не исключено что Норвегия станет основным производителем энергии через ветер и воду. Множество связанных ветроустановок будут настоящим городом с двумя млн. рабочих мест. Этой энергии должно хватить на Норвегию и часть Европы. К 2020 г. разработчики рассчитывают обеспечивать 12% энергии от энергии во всём мире. Экологически чистые турбины сберегут более 10700 млн. тонн выбросов двуокиси углерода.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры — от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Еще в Древнем Египте за три с половиной тысячи лет до нашей эры применялись ветровые двигатели для подъема воды и размола зерна. За пятьдесят с лишним веков ветряные мельницы почти не изменили свой облик. Например, в Англии имеется мельница, построенная в середине XVII в. Несмотря на свой преклонный возраст, она исправно трудится и по сей день. В России до революции насчитывалось приблизительно 250 тыс. ветряных мельниц, общая мощность которых составляла около 1,5 млн. кВт. На них размалывалось до 3 млрд. пудов зерна в год.

Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой — получение электроэнергии. В начале века Н. Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

Ветряные мельницы оказались прекрасными источниками даровой энергии. Неудивительно, что со временем их стали использовать не только для размола зерна. Ветряки вращали дисковые пилы на больших лесопилках, поднимали грузы на большие высоты, использовались для подъема воды. Наряду с водяными мельницами они оставались, практически, самыми мощными машинами прошлого. В той же Голландии, например, где ветряков было больше всего, они успешно работали до середины нашего века. Часть их действует и в настоящее время.

Что интересно, мельницы в средневековье вызывали у некоторых суеверный страх — настолько непривычными были даже простейшие механические приспособления. Мельникам приписывали общение с нечистой силой.

В наши дни к созданию конструкций ветроколеса — сердца любой ветроэнергетической установки — привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Типы ветрогенераторов

Разработано большое количество ветрогенераторов. В зависимости от ориентации оси вращения по отношению к направлению потока ветрогенераторы могут быть классифицированы:

С горизонтальной осью вращения, параллельной направлению ветрового потока;
с горизонтальной осью вращения, перпендикулярной направлению ветра (подобные водяному колесу);
с вертикальной осью вращения, перпендикулярной направлению ветрового потока.

Здесь — сайт ветроэнергетики. НПГ «САЙНМЕТ» является отечественным РАЗРАБОТЧИКОМ И ПРОИЗВОДИТЕЛЕМ ветроэнергетических установок (ветрогенераторов), одним из мировых лидеров в области автономной ветроэнергетики – обладателем Гран-при и трех золотых медалей Всемирной Брюссельской выставки инноваций «Eureka-2005». НПГ «САЙНМЕТ» представляет автономные ветроэнергетические установки: ветрогенератор мощностью 5 и ветрогенератор мощностью 40кВт, а также ветросолнечные и ветродизельные установки на их основе.

Ветродизельные энергетические установки могут быть объединены в локальные сети, а также сопряжены с солнечными батареями. Ветродизельные агрегаты, в зависимости от ветрового потенциала местности, позволяют экономить 50-70% топлива, потребляемого дизель-генераторами сравнимой мощности.

Основные конструктивные решения ветрогенераторов защищены патентами на изобретения.

Энергия ветра

Человек использует энергию ветра с незапамятных времен. Но его парусники, тысячелетиями бороздившие просторы океанов, и ветряные мельницы использовали лишь ничтожную долю из тех 2,7 трлн. кВт энергии, которыми обладают ветры, дующие на Земле. Полагают, что технически возможно освоение 40 млрд. кВт, но даже это более чем в 10 раз превышает гидроэнергетический потенциал планеты.

Почему же столь обильный доступный и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Ветровой энергетический потенциал Земли в 1989 году был оценен в 300 млрд. кВт * ч в год. Но для технического освоения из этого количества пригодно только 1,5%. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Непостоянство ветра требует сооружения аккумуляторов энергии, что значительно удорожает себестоимость электроэнергии. Из-за рассеянности при сооружении равных по мощности солнечных и ветровых электростанций для последних требуется в пять раз больше площади (впрочем, эти земли можно одновременно использовать и для сельскохозяйственных нужд).

Но на Земле есть и такие районы, где ветры дуют с достаточным постоянством и силой. (Ветер, дующий со скоростью 5-8 м/сек., называется умеренным, 14-20 м/сек. – сильный, 20-25 м/сек. – штормовым, а свыше 30 м/сек. – ураганным). Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Основное направление использования энергии ветра – получение электроэнергии для автономных потребителей, а также механической энергии для подъема воды в засушливых районах, на пастбищах, осушения болот и др. В местностях, имеющих подходящие ветровые режимы, ветроустановки в комплекте с аккумуляторами можно применять для питания автоматических метеостанций, сигнальных устройств, аппаратуры радиосвязи, катодной защиты от коррозии магистральных трубопроводов и др.

По оценкам специалистов, энергию ветра можно эффективно использовать там, где без существенного хозяйственного ущерба допустимы кратковременные перерывы в подаче энергии. Использование же ветроустановок с аккумулированием энергии позволяет применять их для снабжения энергией практически любых потребителей.

Мощные ветровые установки стоят обычно в районах с постоянно дующими ветрами (на морских побережьях, в мелководных прибрежных зонах и т.д.) Такие установки уже используют в России, США, Канаде, Франции и других странах.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток её в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород, Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Литература

    Наука и жизнь, №1, 1991 г. М.: Правда.

    Техника молодёжи, №5, 1990 г.

    Феликс Р. Патури Зодчие ХХI века М.: ПРОГРЕСС, 1979.

    Наука и жизнь, No10, 1986 г. М.: Правда.

    Багоцкий В.С., Скундин А.М.

    Химические источники тока М.: Энергоиздат, 1981. 360 с.

    Коровин Н.В. Новые химические источники тока М.: Энергия, 1978. 194 с.

    Д-р Дитрих Берндт Конструкторский уровень и технические границы применения герметичных батарей А/О ВАРТА Беттери Научно-исследовательский центр

    Лаврус В.С. Батарейки и аккумуляторы К.: Наука и техника, 1995. 48 с.

    Наука и жизнь, №5…7, 1981 г. М.: Правда.

    Мурыгин И.В. Электродные процессы в твердых электролитах М.: Наука, 1991. 351 с.

    T he Power Protection Handbook American Power Conversion

    Шульц Ю. Электроизмерительная техника 1000 понятий для практиков М.: Энергоиздат, 1989. 288 с.

    Наука и жизнь, №11, 1991 г. М.: Правда.

    Ю. С. Крючков, И. Е. Перестюк Крылья Океана Л.: Судостроение, 1983. 256 с.

    В. Брюхань. Ветроэнергетический потенциал свободной атмосферы над СССР Метрология и гидрология. №6, 1989 г.

    New scientist №1536, 1986 г.

    Daily Telegraf, 25.09.1986 г.

Каркас одноэтажных зданий состоит из поперечных рам, шарнирно связанных поверху стропильными конструкциями. Поперечная жесткость здания обеспечивается колоннами, жестко защемленными в фундаменте и диском покрытия.

В зданиях с кровлей, устраиваемой по сплошному настилу из крупноразмерных железобетонных плит, условия работы отдельных рам облегчаются за счет частичной передачи нагрузок «жесткой» кровлей на смежные рамы.

Здания с кровлей из плит, укладываемых по прогонам, находятся в менее благоприятных условиях, т.к. независимость деформации отдельных рам при воздействии на них местных нагрузок может привести в ряде случаев к ухудшению эксплуатационных свойств здания.

Поэтому при проектировании зданий с мостовыми кранами значительной грузоподъемности, а также бескрановых, имеющих большую высоту, следует предусматривать продольные связи по верхним поясам стропильных конструкций, до некоторой степени объединяющих работу рам в поперечном направлении.

Обеспечение жесткости здания в продольном направлении только за счет колонн экономически оправдывается лишь для бескрановых зданий: с пролетами L ≤ 24 м и высотами Н ≤ 8,4 м, а также для зданий с L= 30 м и Н ≤7,2 м. Для зданий большой высоты и зданий с мостовыми кранами необходимо предусматривать вертикальные связи жесткости в продольном направлении.

Такие связи устраивают между колоннами и при необходимости в покрытии здания.

Передача ветровых нагрузок с торцовых стен на колонны и вертикальные связи через конструкции кровли целесообразна только для зданий определенных пролетов и высоты. В большепролетных зданиях более или менее значительной высоты такое использование кровли затрудняет крепление стропильных конструкций к колоннам, усложняет конструкции, обеспечивающие устойчивость покрытий, а в ряде случаев и вообще не может быть осуществлено без нарушения целостности кровли, прочности креплений ее к стропильным конструкциям.

Торцовые стены таких зданий должны проектироваться с применением горизонтальных ветровых ферм и с передачей на них подавляющей части ветровой нагрузки.

Кровли из относительно мелких изделий, укладываемых по прогонам, могут воспринимать ветровые нагрузки от торцовых стен и передавать их на колонны лишь при условии развязки их системой поперечных горизонтальных связей по верхним поясам стропильных конструкций.

Условия применения таких, а также других второстепенных конструкций (вертикальные связи между фермами, распорки, растяжки) зависят от параметров здания.

Все одноэтажные промышленные здания делят на конструктивно однородные группы в зависимости от типа транспортного оборудования и габаритных характеристик (пролет и высота), которые приведены в таблице 1 ниже.

К группе I относят здания с пролетами до 24 м, имеющих высоту до 8 м, а также здания с пролетами 30 м и высотой до 7 м.

К группе II относятся здания, имеющие поперечные температурные швы при: L= 18 м и Н = 9 – 15 м; L= 24 м и Н = 9 – 12 м; L ≥ 30 м и Н = 9 – 10 м;

К группе III относятся здания с поперечными температурными швами, но более высокие, чем здания группы II, а также здания без поперечных температурных швов с пролетами L= 18 м, 24 м, 30 м, высотой более 12 м.

Все здания указанной номенклатуры, за исключением зданий группы А – б — I, требуют применения связей.

Таблица 1

Группа зданий по высоте с беспрогонными кровлями с кровлей по прогонам
с мостовыми кранами без мостовых кранов с мостовыми кранами без мостовых кранов
Низкие А – а — I А – б — I Б – а — I Б –б — I
Средние А – а — II А – б — II Б – а — II Б –б — II
Высокие А – а — III А – б — III Б – а — III Б –б — III

Вертикальные связи жесткости между колоннами устанавливают в середине температурного блока каждого продольного ряда. В зданиях с мостовыми кранами вертикальные связи по колоннам устраиваются только на высоту до низа подкрановых балок (рис.1), а в зданиях без мостовых кранов – на полную высоту колонн. Между стальными колоннами крановых зданий связи устанавливают еще и в надкрановых частях колонн, как в середине температурного блока, так и в крайних его шагах (рис. 2 а, б). При высоте подкрановой части стальной колонны превышающей 8,5 м связи сдваивают (рис. 2 в).

По схеме стальные связи между колоннами подразделяются на крестовые и портальные. Крестовые характерны 6-метровым шагам колонн, портальные – 12-метровым.

2. Вертикальные связи по стальным колоннам:

а – крестовые связи; б – портальные связи; в – крестовые сдвоенные связи

Капитальные стены, расположенные в распор между колоннами и прочно связанные с ними, могут быть использованы для обеспечения продольной жесткости здания вместо вертикальных связей лишь при гарантии, что эти стены не будут подлежать разборке при эксплуатации или реконструкции здания.

Во всех зданиях с кровлей по прогонам необходимо предусматривать горизонтальные поперечные связи жесткости, которые устанавливают по верхним поясам стропильных конструкций в крайних панелях каждого температурного блока, независимо от наличия или отсутствия ветровых ферм.

В высоких зданиях требуется устройство горизонтальных ветровых ферм в торцах зданий. В зданиях с мостовыми кранами ветровые фермы устанавливаются на уровне верха подкрановых балок (рис.3).

Рис. 3. Схема расположения ветровой фермы в уровне подкрановых балок

Для передачи давления ветровых ферм по линии подкрановых балок зазоры между торцами балок заполняют бетоном, а крепление подкрановых балок к колоннам связевой панели рассчитывается на восприятие всех горизонтальных сил (включая силы от продольного торможения кранов), действующих по линии подкрановых балок.

В зданиях без мостовых кранов ветровые фермы необходимо располагать в уровне верха вертикальных связей.

Во всех случаях применения ветровых ферм в зданиях без подстропильных конструкций между колоннами на уровне ветровых ферм должны быть поставлены распорки для передачи ветрового давления от ферм на вертикальные связи.

В зданиях с подстропильными конструкциями крепление их к колоннам рассчитывается на горизонтальные нагрузки от ветровых ферм. Зазоры между торцами подстропильных конструкций рекомендуется заполнять бетоном.

Все продольные нагрузки, воспринимаемые отдельными элементами здания, в конечном счете, должны быть переданы вертикальным связям в продольных рядах колонн или распределены между колоннами. Необходимость во второстепенных устройствах для обеспечения прочности узлов и устойчивости элементов покрытия, участвующих в такой передаче, в значительной мере определяется типом кровли.

В зданиях типов А – а – I, II, III и А – б – I с жесткими беспрогонными кровлями ветровые нагрузки распределяются покрытием между всеми колоннами в продольных рядах. Крепление каждой из стропильных конструкций к колоннам в этих случаях должно быть рассчитано на воспринимаемую ею часть общей ветровой нагрузки.

При невозможности обеспечить необходимую прочность крепления стропильных конструкций к колоннам (например, в покрытиях имеющих стропильные конструкции с большой высотой на опорах) устанавливают вертикальные связи между опорными стойками стропильных конструкций в крайних панелях температурного блока. При этом устанавливают и распорки между всеми колоннами ряда по их оголовкам для распределения, воспринимаемого вертикальной связью, ветрового давления между всеми колоннами ряда.

В зданиях типа А – б – II, в которых вертикальные связи между колоннами устраиваются на всю высоту колонн, ветровые усилия передаются покрытием на колонны лишь в узлах крепления стропильных конструкций к колоннам связевой панели. В этом случае необходимо устраивать дополнительные связи в покрытии. Так, при небольшой высоте стропильных конструкций на опоре между колоннами каждого продольного ряда устанавливают распорки, передающие ветровые нагрузки на вертикальные связи. Крепление каждой из стропильных конструкций к колоннам будет при этом работать лишь на приходящуюся на него часть общей ветровой нагрузки. А при значительной высоте стропильных конструкций на опоре (стальные и железобетонные фермы с параллельными поясами, железобетонные безраскосные фермы и т.п.) следует устанавливать вертикальные связи (С1) между опорными стойками ферм в крайних шагах температурного блока, соединяемые непрерывной цепью распорок. Стальные стропильные фермы дополнительно развязываются по нижним поясам раскосами (С2) и крепятся к остальным фермам с помощью растяжек по нижнему поясу (С3) и распорок по верхнему поясу (С4) (рис. 4).

Рис. 4. Схема связей в покрытии по стальным фермам

В зданиях с мостовыми кранами тяжелого или особо тяжелого режимов работы по продольным краям каждого температурного блока в уровне нижнего пояса стропильных ферм устанавливают распорки (С5) и раскосы (С6) (рис.4).

В зданиях с фонарями в пределах фонаря устанавливаются распорки в середине пролета, соединяющие узлы верхних поясов стропильных конструкций, а также вертикальные и горизонтальные связи в крайних шагах температурного блока.

Связи проектируют из прокатных, гнутых, гнутосварных профилей или электросварных труб.

Крепят их с помощью болтов нормальной точности или высокопрочных, а также на сварке.

Дата публикования: 2014-10-17; Прочитано: 8172 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

Ветряные электростанции (ВЭС) представляет собой несколько ветроэлектрических установок, которые собраны в едином месте и объединены в одну сеть.

С применением энергии ветра люди знакомы еще с древних времен. Сегодня использование ветра подразумевает получение электроэнергии. ВЭС возводят в местах с высокой скоростью ветра. Заранее нужно провести исследование местности. Обычных метеорологических данных будет мало для сооружения ВЭС. Необходимо в течение нескольких лет изучать скорость и направление ветра. Ветряные электростанции устанавливают на холмах или возвышенностях, а генераторы- на башнях, высота которых от тридцати до шестидесяти метров. Особое внимание уделяется деревьям и кустарникам, которые могут оказать влияние на ветер.

Конструкция ветряной электростанции состоит из генератора, выпрямительного приспособления, аккумуляторной батареи и инвертора.

Существует 6 типов ветряных электростанций:

1) Наземная;

Наземный тип ветряных электростанция на сегодня является самым востребованным. Для сооружения требуется дорога до строительной площадки и подъёмная техника.

2) Прибрежная;

Прибрежная ВЭС строится недалеко от берега моря либо океана. На побережье дует бриз, который движется с воды на сушу.

3) Шельфовая;

Шельфовые ВЭС сооружают на море, приблизительно 10-50 метров от моря. Преимущество таких конструкций в том, что с берега они еле видны, а также они весьма эффективны, поскольку на море постоянно дует ветер.

4) Плавающая;

Плавающие устанавливают прямо в море глубиной сто метров. Высота стальной башни- 65 метров.

5) Парящая;

Парящие ВЭС расположены высоко над землей.

6) Горная.

Горная, соответственно, в горной местности.

В целом отметим, что проектирование и установка ветровой электростанции требует не только тщательного и долгого изучения климата местности, но и больших денежных затрат. Такая электроэнергия стоит дорого благодаря тому, что она получена из чистого источника. Также высокая стоимость обусловлена большими затратами на необходимое оборудование для строительства. Немалых денег требует и обслуживание ветряных электростанций в зависимости от их типа.

Понравилась статья? Поделитесь ей
Наверх