Вещество придающее растительной клетке упругость. Органоиды растительной клетки и их функции. Строение и функции хлоропластов

Растительная клетка состоит из более или менее жесткой клеточной оболочки и протопласта. Клеточная оболочка – это клеточная стенка и цитоплазматическая мембрана. Термин протопласт происходит от слова протоплазма, которое долгое время использовалось для обозначения всего живого. Протопласт – это протоплазма индивидуальной клетки.

Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс ( основное вещество ) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной , которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей . Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной ( тонопластом).

В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы. Циклоз облегчает передвижение веществ в клетке и обмен ими между клеткой и окружающей средой.

Плазматическая мембрана. Представляет собой бислойную фосфолипидную структуру. Для растительных клеток свойственны впячивания плазматической мембраны.

Плазматическая мембрана выполняет следующие функции:

Участвует в обмене веществ между клеткой и окружающей средой;

Координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки;

Передает гормональные и внешние сигналы, контролирующие рост и дифференцировку клеток.

Ядро. Это наиболее заметная структура в цитоплазме эукариотической клетки. Ядро выполняет две важные функции:

Контролирует жизнедеятельность клетки, определяя, какие белки, и в какое время должны синтезироваться;

Хранит генетическую информацию и передает её дочерним клеткам в процессе клеточного деления.

Ядро эукариотической клетки окружено двумя элементарными мембранами, образующие ядерную оболочку. Она пронизана многочисленными порами диаметром от 30 до 100 нм, видимыми только в электронный микроскоп. Поры имеют сложную структуру. Наружная мембрана ядерной оболочки в некоторых местах объединяется с эндоплазматическим ретикулумом. Ядерную оболочку можно рассматривать как специализированную, локально дифференцированную часть эндоплазматического ретикулума (ЭР).

В окрашенном специальными красителями ядре можно различить тонкие нити и глыбки хроматина и нуклеоплазму (основное вещество ядра). Хроматин состоит из ДНК, связанной со специальными белками – гистонами. В процессе клеточного деления хроматин все более уплотняется и собирается в хромосомы. В ДНК закодирована генетическая информация.

Организмы различаются по числу хромосом в соматических клетках. Например, капуста имеет – 20 хромосом; подсолнечник – 34; пшеница – 42; человек – 46, а один из видов папоротника Ophioglossum – 1250. Половые клетки (гаметы) имеют только половину количества хромосом, характерных для соматических клеток организма. Число хромосом в гаметах называют гаплоидным (одинарным), в соматических клетках – диплоидным (двойным). Клетки, имеющие более двух наборов хромосом, называются полиплоидными .

Под световым микроскопом можно рассмотреть сферические структуры – ядрышки . В каждом ядре имеется одно или несколько ядрышек, которые заметны в неделящихся ядрах. В ядрышках синтезируются рибосомные РНК. Обычно в ядрах диплоидных организмов имеется два ядрышка по одному для каждого гаплоидного набора хромосом. Ядрышки не имеют собственной мембраны. Биохимически ядрышки характеризуются высокой концентрацией РНК, которая здесь связана с фосфопротеидами. Размер ядрышек зависит от функционального состояния клетки. замечено, что у быстро растущей клетки, в которой идут интенсивные процессы синтеза белка, ядрышки увеличиваются в размерах. В ядрышках продуцируются иРНК и рибосомы, выполняющие синтетическую функцию только в ядре.

Нуклеоплазма (кариоплазма) представлена гомогенной жидкостью, в которой растворены различные белки, в том числе и ферменты.

Митохондрии. Как и хлоропласты, митохондрии окружены двумя элементарными мембранами. Внутренняя мембрана образует множество складок и выступов – крист, которые значительно увеличивают внутреннюю поверхность митохондрии. Они значительно меньше, чем пластиды, имеют около 0,5 мкм в диаметре и разнообразны по длине и форме.

В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии и передачей её молекулам АТФ, основного резерва энергии всех эукариотических клеток. Большинство растительных клеток содержит сотни и тысячи митохондрий. Их число в одной клетке определяется потребностью клетки в АТФ. Митохондрии находятся в постоянном движении, перемещаясь из одной части клетки в другую, сливаясь друг с другом делятся. Митохондрии обычно собираются там, где нужна энергия. Если плазматическая мембрана активно переносит вещества из клетки в клетку, то митохондрии располагаются вдоль поверхности мембраны. У подвижных одноклеточных водорослей митохондрии скапливаются у оснований жгутиков, поставляя энергию, необходимую для их движения.

Митохондрии, как и пластиды, являются полуавтономными органеллами, содержащими компонентами, необходимые для синтеза собственных белков. Внутренняя мембрана окружает жидкий матрикс, в котором находятся белки, РНК, ДНК, рибосомы, сходные с бактериальными и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеоидах.

На основании сходства бактерий с митохондриями и хлоропластами эукариотических клеток можно предположить, что митохондрии и хлоропласты произошли от бактерий, которые нашли «убежище» в более крупных гетеротрофных клетках - предшественниках эукариот.

Микротельца. В отличие от пластид и митохондрий, которые отграничены двумя мембранами, микротельца представляют собой сферические органеллы, окруженные одной мембраной. Микротельца имеют гранулярное (зернистое) содержимое, иногда в них встречаются и кристаллические белковые включения. Микротельца связаны с одним или двумя участками эндоплазматического ретикулума.

Некоторые микротельца, называемые проксисомами, играют важную роль в метаболизме гликолевой кислоты, имеющем непосредственное отношение к фотодыханию. В зеленых листьях они связаны с митохондриями и хлоропластами. Другие микротельца, называемые, глиоксисомами, содержат ферменты, необходимые для превращения жиров в углеводы. Это происходит во многих семенах во время прорастания.

Вакуоли – это отграниченные мембраной участки клетки, заполненные жидкостью – клеточным соком. Они окружены тонопластом (вакуолярной мембраной).

Молодая растительная клетка содержит многочисленные мелкие вакуоли, которые по мере старения клетки сливаются в одну большую. В зрелой клетке вакуолью может быть занято до 90% её объема. При этом цитоплазма прижата в виде тонкого периферического слоя к клеточной оболочке. Увеличение размера клетки в основном происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость ткани. В этом заключается одна из основных функций вакуоли и тонопласта.

Основной компонент сока – вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Вакуоли содержат соли, сахара, реже белки. Тонопласт играет активную роль в транспорте и накоплении в вакуоли некоторых ионов. Концентрация ионов в клеточном соке может значительно превышать ее концентрацию в окружающей среде. При высоком содержании некоторых веществ в вакуолях образуются кристаллы. Чаще всего встречаются кристаллы оксалата кальция, имеющие различную форму.

Вакуоли – места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигменты. Голубой, фиолетовый, пурпурный, темно-красный, пунцовый придают растительным клеткам пигменты из группы антоцианов. В отличие от других пигментов они хорошо растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей (редис, турнепс, капуста), фруктов (виноград, сливы, вишни), цветов (васильки, герани, дельфиниумы, розы, пионы). Иногда эти пигменты маскируют в листьях хлорофилл, например, у декоративного красного клена. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла. В листьях, когда антоцианы не образуются, после разрушения хлорофилла заметными становятся желто-оранжевые каротиноиды хлоропластов. Наиболее ярко окрашены листья холодной ясной осенью.

Вакуоли участвуют в разрушении макромолекул, в круговороте их компонентов в клетке. Рибосомы, митохондрии, пластиды, попадая в вакуоли, разрушаются. По этой переваривающей активности их можно сравнить с лизосомами – органеллами животных клеток.

Вакуоли образуются из эндоплазматической сети (ретикулума)

Рибосомы. Маленькие частицы (17 – 23нм), состоящие примерно из равного количества белка и РНК. В рибосомах аминокислоты соединяются с образованием белков. Их больше в клетках с активным обменом веществ. Рибосомы располагаются в цитоплазме клетки свободно или же прикрепляются к эндоплазматическому ретикулуму (80S). Их обнаруживают и в ядре (80S), митохондриях (70S), пластидах (70S).

Рибосомы могут образовывать комплекс, на которых происходит одновременный синтез одинаковых полипептидов, информация о которых снимается с одной молекулы и РНК. Такой комплекс называется полирибосомами (полисомами). Клетки, синтезирующие белки в больших количествах, имеют обширную систему полисом, которые часто прикрепляются к наружной поверхности оболочки ядра.

Эндоплазматический ретикулум. Это сложная трехмерная мембранная система неопределенной протяженности. В разрезе ЭР выглядит как две элементарные мембраны с узким прозрачным пространством между ними. Форма и протяженность ЭР зависят от типа клетки, ее метаболической активности и стадии дифференцировки. В клетках, секретирующих или запасающих белки, ЭР имеет форму плоских мешочков или цистерн, с многочисленными рибосомами, связанными с его внешней поверхностью. Такой ретикулум называется шероховатым эндоплазматическим ретикулумом. Гладкий ЭР обычно имеет трубчатую форму. Шероховатый и гладкий эндоплазматические ретикулумы могут присутствовать в одной и той же клетке. Как правило, между ними имеются много численные связи.

Эндоплазматический ретикулум функционирует как коммуникационная система клетки. Он связан с внешней оболочкой ядра. Фактически эти две структуры образуют единую мембранную систему. Когда ядерная оболочка во время деления клетки разрывается, ее обрывки напоминают фрагменты ЭР. Эндоплазматический ретикулум – это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы – которые проходят сквозь клеточные оболочки.

Эндоплазматический ретикулум – основное место синтеза клеточных мембран. В некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, цистерны диктиосом.

Микротрубочки обнаружены практически во всех эукариотических клетках. Представляют собой цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая трубочка состоит из субъединиц белка, называемого тубулином. Субъединицы образуют 13 продольных нитей, окружающих центральную полость. Микротрубочки – это динамические структуры, они регулярно разрушаются и образуются на определенных стадиях клеточного цикла. Их сборка происходит в особых местах, которые называются центрами организации микротрубочек. В растительных клетках они имеют слабовыраженную аморфную структуру.

Функции микротрубочек: участвуют в образовании клеточной оболочки; направляют пузырьки диктиосом к формирующейся оболочке, подобно нитям веретена, которые образуются в делящейся клетке; играют определенную роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки – важный компонент жгутиков и ресничек, в движении которых, играют немаловажную роль.

Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Представляют собой длинные нити толщиной 5 – 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений. По-видимому, играют важную роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.

Основное вещество довольно долго считали гомогенным (однородный) богатым белком раствором с малым количеством структур или вообще бесструктурным. Однако в настоящее время, используя высоковольтный электронный микроскоп, было установлено, что основное вещество представляет трехмерную решетку, построенную из тонких (диаметром 3 – 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, включая микротрубочки и микрофиламенты, подвешены к этой микротрабекулярной решетке.

Микротрабекулярная структура представляет собой решетку из белковых тяжей, пространство между которыми заполнено водой. Вместе с водой решетка имеет консистенцию геля, гель имеет вид студенистых тел.

К микротрабекулярной решетке прикреплены органеллы. Решетка осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт.

Липидные капли – структуры сферической формы, придающие гранулярность цитоплазме растительной клетки под световым микроскопом. На электронных микрофотографиях они выглядят аморфными. Очень похожие, но более мелкие капли встречаются в пластидах.

Липидные капли, принимая за органеллы, называли их сферосомами и считали, что они окружены одно- или двуслойной мембраной. Однако последние данные показывают, что у липидных капель мембран нет, но они могут быть покрыты белком.

Эргастические вещества – это «пассивные продукты» протопласта: запасные вещества или отходы. Они могут появляться и исчезать в разные периоды клеточного цикла. Кроме зерен крахмала, кристаллов, антоциановых пигментов и липидных капель. К ним относятся смолы, камеди, танины и белковые вещества. Эргастические вещества входят в состав клеточной оболочки, основного вещества цитоплазмы и органелл, в том числе вакуолей.

Жгутики и реснички – это тонкие, похожие на волоски структуры, которые отходят от поверхности многих эукариотических клеток. Имеют постоянный диаметр, но длина колеблется от 2 до 150 мкм. Условно более длинные и немногочисленные из них называют жгутиками, а более короткие и многочисленные - ресничками. Четких различий между этими двумя типами структур не существует, поэтому для обозначения обоих используют термин жгутик.

У некоторых водорослей и грибов жгутики являются локомоторными органами, с помощью которых они передвигаются в воде. У растений (например, мхов, печеночников, папоротников, некоторых голосеменных) только половые клетки (гаметы) имеют жгутики.

Каждый жгутик имеет определенную организацию. Наружное кольцо из 9 пар микротрубочек окружает две дополнительные микротрубочки, расположенные в центре жгутика. Содержащие ферменты «ручки» отходят от одной микротрубочки каждой из наружных пар. Это основная схема организации 9 + 2 обнаружена во всех жгутиках эукариотических организмов. Считают, что движение жгутиков основано на скольжении микротрубочек, при этом наружные пары микротрубочек движутся одна вдоль другой без сокращения. Скольжение пар микротрубочек относительно друг друга вызывает локальное изгибание жгутика.

Жгутики «вырастают» из цитоплазматических цилиндрических структур, называемых базальными тельцами, образующимися и базальную часть жгутика. Базальные тельца имеют внутреннее строение, напоминающее строение жгутика, за исключением того, что наружные трубочки собраны в тройки, а не в пары, а центральные трубочки отсутствуют.

Плазмодесмы. Это тонкие нити цитоплазмы, которые связывают между собой протопласты соседних клеток. Плазмодесмы либо проходят сквозь клеточную оболочку в любом месте, либо сосредоточены на первичных поровых полях или в мембранах между парами пор. Под электронным микроскопом плазмодесмы выглядят как узкие каналы, выстланные плазматической мембранной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера – десмотрубочка, которая сообщается с эндоплазматическим ретикулумом обеих смежных клеток. Многие плазмодесмы формируются во время клеточного деления, когда трубчатый эндоплазматический ретикулум захватывается развивающейся клеточной пластинкой. Плазмодесмы могут образовываться и в оболочках неделящихся клеток. Эти структуры обеспечивают эффективный перенос некоторых веществ от клетки к клетке.

Деление клеток. У многоклеточных организмов деление клеток наряду с увеличением их размеров является способом роста всего организма. Новые клетки, образовавшиеся во время деления, сходны по структуре и функциям, как с родительской клеткой, так и между собой. Процесс деления у эукариот можно подразделить на две частично перекрывающиеся стадии: митоз и цитокинез.

Митоз – это образование из одного ядра двух дочерних ядер, морфологически и генетически эквивалентных друг другу. Цитокинез – это деление цитоплазматической части клетки с образованием дочерних клеток.

Клеточный цикл. Живая клетка проходи ряд последовательных событий, составляющих клеточный цикл. Продолжительность самого цикла варьирует в зависимости от типа клетки и внешних факторов, например от температуры или обеспеченности питательными веществами. Обычно цикл делится на интерфазу и четыре фазы митоза.

Интерфаза. Период между последовательными митотическими делениями.

Интерфазу делят на три периода, обозначаемые как G 1 , S, G 2 .

В период G 1 , который начинается после митоза. В этот период увеличивается количество цитоплазмы, включая различные органеллы. Кроме того, согласно современной гипотезе, в период G 1 синтезируются вещества, которые либо стимулируют, либо ингибируют период S и остальную часть цикла, определяя, таким образом, процесс деления.

В период S следует за периодом G 1, в это время происходит удвоение генетического материала (ДНК).

В период G 2, который следует за S, формируются структуры, непосредственно участвующие в митозе, например, компоненты веретена.

Некоторые клетки проходит неограниченный ряд клеточных циклов. Это одноклеточные организмы и некоторые клетки зон активного роста (меристем). Некоторые специализированные клетки после созревания теряет способность к размножению. Третья группа клеток, например образующих раневую ткань (каллус), сохраняет способность делиться только в специальных условиях.

Митоз, или деление ядра. Это непрерывный процесс, подразделяемый на четыре фазы: профазу, метафазу, анафазу, телофазу. В результате митоза генетический материал, удвоившийся в интерфазе, делится поровну между двумя дочерними ядрами.

Одним из самых ранних признаков перехода клетки к делению служит появление узкого, кольцеобразного пояска из микротрубочек непосредственно под плазматической мембраной. Это относительно плотный поясок окружает ядро в экваториальной плоскости будущего митотического веретена. Так как он проявляется перед профазой, его называют препрофазным пояском. Он исчезает после митотического веретена, задолго до появления в поздней телофазе клеточной пластинки, которая растет от центра к периферии и сливается с оболочкой материнской клетки в области, ранее занятой препрофазным пояском.

Профаза. В начале профазы хромосомы напоминают длинные нити, разбросанные внутри ядра. Затем, по мере того как нити укорачиваются и утолщаются, можно увидеть, что каждая хромосома состоит не из одной, а из двух переплетенных нитей, называемых хроматидами. В поздней профазе две укороченные спаренные хроматиды каждой хромосомы лежат рядом параллельно, соединённые узким участком, называемым центромерой. Она имеет определённое положение на каждой хромосоме и делит хромосому на два плеча различной длины.

Микротрубочки располагаются параллельно поверхности ядра вдоль оси веретена. Это само раннее проявление сборки митотического веретена.

К концу профазы ядрышко постепенно теряет чёткие очертания и наконец исчезает. Вскоре после этого распадается и ядерная оболочка.

Метафаза. В начале метафазы веретено, которое представляет трёхмерную структуру, наиболее широкую в средине и суживающуюся к полюсам, занимает место, прежде занятое ядром. Нити веретена – это пучки микротрубочек. Во время метафазы хромосомы, состоящие из двух хроматид каждая, располагаются так, что их центромеры лежат в экваториальной плоскости веретена. Своей центромерой каждая хромосома прикрепляется к нитям веретена. Однако, некоторые нити проходят от одного полюса к другому, не прикрепляясь к хромосомам.

Когда все хромосомы расположатся в экваториальной плоскости, метафаза завершится. Хромосомы готовы к делению.

Анафаза. Хроматиды каждой хромосомы расходятся. Теперь это дочерние хромосомы. Прежде всего, делится центромера, и две дочерние хромосомы увлекаются к противоположным полюсам. При этом центромеры движутся впереди, а плечи хромосом тянутся сзади. Нити веретена, прикрепленные к хромосомам, укорачиваются, способствуя расхождению хроматид и движению дочерних хромосом в противоположные стороны.

Телофаза. В телофазе завершается обособление двух идентичных групп хромосом, при этом вокруг каждой из них формируется ядерная мембрана. В этом активное участие принимает шероховатый ретикулум. Аппарат веретена исчезает. В ходе телофазы хромосомы теряют чёткость очертаний, вытягиваются, превращаясь снова в тонкие нити. Ядрышки восстанавливаются. Когда хромосомы становятся невидимыми, митоз завершается. Два дочерние ядра вступают в интерфазу. Они генетически эквивалентны друг другу и материнскому ядру. Это очень важно, так как генетическая программа, а вместе с ней и все признаки должны быть переданы дочерним организмам.

Продолжительность митоза варьирует у различных организмов и она зависит от типа ткани. Однако профаза самая длинная, а анафаза самая короткая. В клетках кончика корня продолжительность профазы составляет 1 – 2 ч; метафазы – 5 – 15 мин; анафазы – 2 – 10 мин; телофазы – 10 – 30 мин. Продолжительность интерфазы составляет от 12 до 30 ч.

Во многих эукариотических клетках центры организации микротрубочек, ответственные за формирование митотического веретена, связаны с центриолями .



Просмотры: 14561

04.03.2018

Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.


Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму ), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды . Впервые описал жидкое содержимое клетки и назвал его (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).


(одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.




Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.


Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид . Открытие этих органоидов, их описание и классификация (1880 - 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.




Среди всех типов пластид наиболее важную роль выполняют хлоропласты : в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений).


Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.


Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.



Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы ), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения - матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.




Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.




Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул ), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.




были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.


Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.




Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС ). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.




По своему строению ЭПС неоднородна, различают два её типа: гранулярную , на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых - смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами.



Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.

Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы - ядрышек , погруженных в бесцветную, однородную, гелеобразную массу - ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек - синтез РНК и формирование рибосом.

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы - животное. Ваши клетки - это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

Особенности растительных клеток

Теперь давайте рассмотрим особенности Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клетка Растительная клетка
Клеточная стенка отсутствует присутствует (формируется из целлюлозы)
Форма круглая (неправильная) прямоугольная (неподвижная)
Вакуоль одна или несколько мелких (гораздо меньше, чем в растительных клетках) Одна большая центральная вакуоль занимает до 90% объема клетки
Центриоли присутствуют во всех клетках животных присутствуют в более низких растительных формах
Хлоропласты нет Растительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазма есть есть
Рибосомы присутствуют присутствуют
Митохондрии имеются имеются
Пластиды отсутствуют присутствуют
Эндоплазматический ретикулум (гладкий и шершавый) есть есть
Аппарат Гольджи имеется имеется
Плазматическая мембрана присутствует присутствует
Жгутики
могут быть найдены в некоторых клетках
Лизосомы есть в цитоплазме обычно не видны
Ядра присутствуют присутствуют
Реснички присутствуют в большом количестве растительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную в процессе дыхания.

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

Итак, мы провели выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

В то же время эти мельчайшие единицы принципиально отличаются способом питания.

Клетка – это мельчайшая структурно-функциональная единица живого организма . Каждая клетка осуществляет функции, от которых зависит ее жизнь: поглощает вещества и энергию, избавляется от отходов жизнедеятельности, использует энергию для построения сложных структур из более простых веществ, растет, размножается . Кроме того она выполняет отдельные специализированные функции в качестве вклада в общую жизнедеятельность многоклеточного организма. Все высшие растения относятся к надцарству эукариотов (содержащих ядра) и имеют общий план строения клеток . Растительная клетка состоит из клеточной оболочки, включающей клеточную стенку и цитоплазматическую мембрану и протопласта, состоящего из цитоплазмы и ядра.


Клеточная оболочка

Клеточная стенка

Клеточная стенка бывает только у растительных клеток, бактерий и грибов, но у растений состоит преимущественно из целлюлозы. Придает клетке форму, определяя рамки ее роста, обеспечивает структурную и механическую поддержку, тургор (напряженное состояние оболочек), защиту от внешних факторов, запасает питательные вещества. Клеточная стенка пористая, чтобы пропускать воду и другие малые молекулы, жесткая, чтобы придавать телу растения определенную структуру и обеспечивать ему опору и гибкая, чтобы растение под напором ветра гнулось, но не ломалось .

Цитоплазматическая мембрана

Тонкой, гибкой и эластичной пленкой покрывает всю клетку, отделяя ее от внешней среды. Через нее осуществляется перенос веществ из клетки в клетку, обмен веществами со средой . Состоит в основном из белков и липидов, обладает избирательной проницательностью. Вода проходит сквозь клеточную мембрану совершенно свободно путем осмоса .

Полярным молекулам и ионам мембранные белки помогают перемещаться в обоих направлениях. Крупные частицы поглощаются клеткой путем фагоцитоза: мембрана окружает их, захватывает в вакуоли, содержащие клеточный сок и перемещает в клетку . Для выведения веществ наружу клетки используют обратный процесс – экзоцитоз.

Протопласт

Цитоплазма

Содержит воду, различные соли и органические соединения, структурные компоненты – органеллы . Находится в постоянном движении, объединяет все клеточные структуры и способствует их взаимодействию друг с другом. В цитоплазме расположены все органоиды клетки :

  • Вакуоль – полость, содержащая клеточный сок, занимающая большую часть растительной клетки (до 90%), отделенная от цитоплазмы тонкопластом. Поддерживает тургорное давление, накапливает молекулы питательных веществ, соли и другие соединения, красные, синие и пурпурные пигменты, отходы жизнедеятельности. В ядовитых растениях здесь хранятся цианиды, не причиняя вреда растению.
  • Пластиды – органеллы, окруженные двойной мембраной, отделяющей их от цитоплазмы. Из пластид наиболее широко распространены хлоропласты – структуры, от которых зависит зеленая окраска многих растительных клеток. В хлоропластах находится зеленый пигмент хлорофилл, необходимый для фотосинтеза. Во многих растениях присутствуют другие типы пластид с красными, желтыми и оранжевыми пигментами — хромопласты, именно они придают цветам, плодам и осенним листьям соответствующую окраску. В бесцветных пластидах лейкопластах синтезируется крахмал, образуются липиды и белки, их особенно много в клубнях, корнях и семенах. На свету лейкопласты превращаются в хлоропласты.
  • Митохондрии – состоят из наружной и внутренней мембран, создают большую часть клеточного запаса энергии в форме молекул АТФ(аденозинтрифосфорной кислоты.
  • Рибосомы – состоят из большой и малой субчастиц, в них происходит синтез белка;
  • Эндопламатическая сеть (ретикулум) – сложная трехмерная система мембран, состоящая из цистерн, каналов, трубочек и пузырьков. Из ретикулума образуются вакуоли, он делит клетку на компартменты (ячейки), на поверхности его мембран протекают многие химические реакции
  • Аппарат Гольджи — участвует в образовании клеточных оболочек, представляет собой стопку мембранных мешочков, в которые упаковываются белки и прочие материалы для выведения из клетки.

Клеточное ядро

Ядро – самая заметная органелла клетки, которая обеспечивает важнейшие метаболические и генетические функции . В ядре находится ДНК – генетический материал клетки, объединенный с большим количеством белка в структуры, называемые хромосомами. Оно окружено ядерной мембраной, в которой имеются крупные поры. Участок ядра, где происходит образование субчастиц рибосом, называется ядрышком .

Все в живой клетке пребывает в непрерывном движении. Для ее разнообразной двигательной активности необходимы два типа структур – микротрубочки, образующие внутренний каркас и микрофиламенты, представляющие собой белковые волокна. Перемещение клеток в жидкой среде и создание тока жидкости у своей поверхности осуществляется с помощью ресничек и жгутиков – тонких выростов, содержащих микротрубочки.

Сравнение строения растительных и животных клеток

Растительная клетка Животная клетка
Максимальный размер 100 мкм 30 мкм
Форма Плазматическая или кубическая Разнообразная
Центриоли Отсутствуют Есть
Положение ядра Периферическое Центральное
Пластиды Хлоропласты, хромопласты и лейкопласты Отсутствуют
Вакуоли Крупные Мелкие
Запасные питательные вещества Крахмал, белок, масла, соли Белки, жиры, углевод гликоген
Способ питания Автотрофный – потребление неорганических соединений и создание из них углеводов с помощью солнечной или химической энергии Гетеротрофный – с использованием готовых органических соединений
Фотосинтез Есть Отсутствует
Клеточное деление Дополнительная фаза митоза — препрофаза Митоз – деление ядра, приводящее к образованию двух дочерних ядер с таким же набором хромосом
Синтез АТФ В митохондриях и хлоропластах Только в митохондриях

Сходства строения растительной и животной клетки

У растительной и животной клетки имеются следующие общие признаки:

  • Универсальное мембранное строение;
  • Единые структурные системы – цитоплазма и ядро;
  • Одинаковый химический состав;
  • Сходные процессы обмена веществ и энергии;
  • Сходный процесс деления клеток;
  • Единый принцип наследственного кода;

Взрослая растительная клетка состоит из оболочки, протопласта, вакуоли. Более или менее жесткая и прочная углеводная оболочка одевает клетку снаружи.

Протопласт - это живое содержимое клетки. Обычно он в виде довольно тонкого постенного слоя прижат к оболочке.

Вакуоль - пространство в центральной части клетки, заполнен­ное водянистым содержимым - клеточным соком.

Клеточная оболочка и вакуоль являются продуктами жизнедея­тельности протопласта и образуются им на определенных этапах раз­вития клетки. Протопласт представляет собой чрезвычайно сложное образование, дифференцированное на различные компоненты, называ­емые органоидами. К органоидам клетки относятся ядро, пластиды, митохондрии, рибосомы, эндоплазматический ретикулум, диктиосомы, микротела, лизосомы. Органоиды погружены в гиалоплазму, которая обеспечивает их взаимодействие. Гиалоплазма с органоидами, за выче­том ядра, составляет цитоплазму клетки.

Органоиды в клетках различных растений и животных имеют сход­ную молекулярную организацию и близки по химическому составу. Однако между ними имеются и существенные различия. Так, к особен­ностям растительных клеток следует отнести наличие у них прочных оболочек,

пронизанных плазмодесмами, пластид и в большинстве слу­чаев крупной центральной вакуоли. Эти особенности присущи только растительным клеткам и обусловлены прикрепленным образом жизни, отсутствием скелета, автотрофностью и слабым развитием у растений системы выделения.

Характерными особенностями растительных клеток являются:

1. рост путем растяжения (увеличение размера клетки происходит в основном за счет увеличения объема вакуоли);

2. отсутствие центриолей, участвующих в делении клеток;

3. отсутствие подвижности (за немногими исключениями), тогда как многие клетки животного организма способны к активному движению.

А теперь перейдем к характеристике протопласта. Известно, что живое содержимое клеток получило название протоплазмы. Произ­водным от этого слова - протопластом стали называть содержимое отдельной клетки. Рассмотрим химический состав и физические свой­ства протопласта.

Вещества, из которых построена живая клетка, и ко­торые она выделяет в определенные периоды жизнедеятельности чрезвычайно разнообразны, их насчитываются десятки и сотни тысяч. Эти вещества грубо можно объединить в конституционные, т. е. входящие в состав живой материи и участвующие в метаболизме (обмене ве­ществ), запасные (временно выключенные из обмена) и отбросы (ко­нечные продукты метаболизма). Запасные вещества и отбросы вместе часто называют эргастическими веществами клетки. Основными клас­сами конституционных веществ являются белки, нуклеиновые кислоты, липиды и углеводы.



Из всех химических соединений живая клетка больше всего со­держит воды (60 - 90%), в которой растворены другие вещества. Эти вещества могут вступать в реакции только в растворенном состоянии, поэтому высокое содержание воды в протопласте не только оправда­но, но и необходимо.

В состав растительной клетки входят и неорганические вещества, главным образом ионы минеральных солей. Неорганические ионы иг­рают важную роль в создании осмотического давления, необходимого для поступления в клетку воды, некоторые из них обеспечивают актив­ность ферментов.

По физическим свойствам протопласт представляет собой колло­идный раствор, поэтому он имеет слизистую консистенцию и напоми­нает яичный белок. Обычно, характеризуя протопласт, говорят, что он представляет собой гидрозоль, т. е. коллоидную систему с преоблада­нием воды.

Термин «цитоплазма» («цитос» - клетка, «плазма» - вещество) был введен для обозначения протоплазматического матрикса, окружа­ющего ядро.






Одним из основных достижений в изучении клетки можно считать установление принципа мембранной организации цитоплазмы. Согласно этому принципу в основе структуры цитоплазмы лежат биологиче­ские мембраны - тончайшие довольно плотные пленки, построенные в основном из фосфолипидов и белков (липопротеидов). Мембраны - живые компоненты цитоплазмы, они отграничивают протопласт от вне­клеточной среды, создают внешнюю границу органелл и участвуют в создании их внутренней структуры, во многом являясь носителями их функций. Характерной особенностью мембран является их замкну­тость, непрерывность, т. е. концы их никогда не бывают открытыми. Количество мембранных элементов в цитоплазме колеблется в зависи­мости от типа и состояния клетки.



Одно из основных свойств мембран - их избирательная прони­цаемость, или, иными словами, - полупроницаемость: одни вещества проходят через них с трудом, другие легко и даже против градиента концентрации. Таким образом, мембраны являются барьером для свободной диффузии многих растворенных в воде веществ и во многом определяют специфический химический состав цитоплазмы и ее органелл. Избирательная проницаемость мембран создает возможность подразделения цитоплазмы на изолированные отсеки - компартименты различного химического состава, в которых одновременно и неза­висимо друг от друга могут протекать различные биохимические про­цессы, часто противоположные по направлению (синтез и распад макро­молекул). Благодаря мембранам отдельные ферменты и их комплексы определенным образом располагаются в цитоплазме, что обеспечивает последовательное протекание химических реакций, лежащих в основе жизнедеятельности клеток.

Пограничными мембранами цитоплазмы являются плазмалемма и тонопласт. Плазмалемма или, как ее еще называют, плазматическая мембрана, - это наружная, поверхностная мембрана цитоплазмы. Она обычно плотно прилегает к оболочке клетки.

Тонопласт, или вакуолярная мембрана, - это внутренняя тончай­шая пленка, пограничная с вакуолей. Тонопласт обладает способнос­тью быстро восстанавливать свою пленку.

Основную массу цитоплазмы составляет мезоплазма или гиалоплазма, или матрикс. Гиалоплазма связывает все погруженные в нее органеллы, обеспечивая их взаимодействие. Большую роль гиалоплаз­ма играет в обмене углеводов и липидов. Количество и состав ее изме­няются в зависимости от фазы развития и активности клетки. В моло­дых клетках она является одним из основных по объему компонентов цитоплазмы, в зрелых ее остается очень мало. Часть структурных бел­ковых компонентов гиалоплазмы формируют микротрубки и микрофиломенты. Микротрубки - это очень мелкие структуры. Функции их окончательно не выяснены. Имеется предположение, что они участву­ют в проведении веществ по цитоплазме, в перемещении хромосом во время митоза и в поддержании формы протопласта. Микрофиламенты, или цитоплазматические нити, образуют скопления - цитоплазматические волокна. Предполагают, что они генерируют движение ци­топлазмы.

Способность цитоплазмы к движению - одно из важных свойств живой клетки. Эти движения заметны главным образом во взрослых клетках, где цитоплазма имеет вид постенного слоя, окружающего ваку­оль. Движение цитоплазмы может быть вращательным, когда цитоплаз­ма движется в одном направлении вокруг вакуоли, увлекая пластиды и митохондрии. Если тяжи цитоплазмы пересекают центральную вакуоль, то создается струйчатое движение цитоплазмы, при котором направле­ние токов в разных тяжах различно.

Интенсивность движения зависит от ряда факторов: температуры, света, снабжения кислородом и др.

В гиалоплазме всегда находятся мельчайшие почти сферические гранулы - рибосомы. Они являются местом синтеза белков и амино­кислот. Состоят они в основном из РНК и нескольких десятков моле­кул разных структурных белков. Есть свободные рибосомы гиалоплаз- мы и прикрепленные, располагающиеся на поверхности мембран эндоплазматического ретикулума. Рибосомы обнаружены также в митохондриях и пластидах. При синтезе белка рибосомы объединяются в полисомы (полирибосомы). Таким образом рибосомы ответственны за образование живой материи.

Рибосомы объединяются в полисомы с помощью матричной РНК, переносящей информацию от ядра к белку. Аминокислоты, из которых синтезируются белки, переносятся к полисомам транспортной РНК, на­ходящейся в цитоплазме. Источником энергии для синтеза служит гуанозинтрифосфат.

Эндоплазматический ретикулум (ЭР), или эндоплазматическая сеть, представляет собой ограниченную мембранами систему субмик­роскопических каналов, пронизывающих гиалоплазму. Структура ЭР полностью еще не выяснена. ЭР называют шероховатым, или гранулярным, если к его поверх­ности прикреплены рибосомы. При отсутствии рибосом ЭР называют гладким, или агранулярным.

Функции ЭР:

1. синтез специфических ферментов, которые накапливаются в полостях цистерн и могут выделяться из клетки и использоваться для особых целей;

2. по ретикулярным каналам может происходить направленный транспорт макромолекул и ионов как внутри клетки, так и между клет­ками по плазмодесмам;

3. гранулярный ретикулум - центр образования и роста клеточ­ных мембран;

4. при посредстве ЭР осуществляется взаимодействие органелл.

5. И наконец, гранулярный ретикулум дает начало таким компонен­там клетки, как вакуоли, лизосомы, микротела.

Аппарат Гольджи в растительных клетках состоит из отдельных диктиосом, которые называются телами Гольджи, и пузырьков Гольд­жи. Диктиосомы - органеллы, состоящие из пачек плоских округлых цистерн, каждая из которых ограничена элементарной мембраной. В состав диктиосом растений входит от 2 до 7 цистерн. Отдельные цистерны стопки не связаны друг с другом.

Диктиосомы участвуют в секреции. Секретируемое вещество на­капливается в пузырьках, которые переносят его в предназначенное для

него место. В активно секретирующих диктиосомах происходит энер­гичное образование пузырьков, вследствие чего вся цистерна в конце концов распадается на пузырьки. Исчезающая цистерна замещается новой. Во всех этих процессах диктиосомы обнаруживают полярность: на одной стороне стопки происходит образование пузырьков, приводя­щее к разрушению цистерн, а на другой добавление новых цистерн.

Секретируемое вещество синтезируется не только в диктиосомах, но, возможно, и в эндоплазматическом ретикулуме, в диктиосоме же происходят лишь конденсация и видоизменение этого продукта. Сек- ретируемые вещества представляют собой главным образом полисаха­риды или полисахаридно-белковые комплексы, обладающие высокой вязкостью. Эти вещества могут включатся в клеточные оболочки или экскретироваться наружу. Когда пузырек, транспортирующий вещество в оболочку, достигает плазмалеммы, его мембрана сливается с ней, а содержимое освобождается в оболочку. Образовавшиеся из диктио­сом пузырьки участвуют в процессе формирования новой клеточной оболочки, происходящем после митоза.

Митохондрии. Эти органеллы являются неотъемлемыми компо­нентами всех живых клеток. Форма, величина, число и положение этих органелл в цитоплазме постоянно меняются. Они выглядят как палоч­ки, гранулы или нити, находящиеся в постоянном движении (от греч. «митос» - нить, «хондрион» - зерно, гранула). Форма митохондрий овальная, реже округлая или вытянутая. Очень редко встречаются ми­тохондрии сложной формы. Число митохондрий в клетке варьирует в зависимости от ее типа, фазы развития и состояния. Обычно оно колеблется от нескольких единиц до нескольких сотен (чаще всего несколько десятков). Совокупность всех митохондрий в клетке носит название хондриона.

Митохондрии имеют следующее строение: снаружи они ограниче­ны оболочкой, состоящей из двух мембран и светлого промежутка между ними. Наружная мембрана контролирует обмен веществ между митохондрией и гиалоплазмой. Внутренняя мембрана отличается по строению и химическому составу от наружной, она образует выросты в полость митохондрии в виде различной длины пластин или, реже, трубок, называемые кристами. Кристы значительно увеличивают внут­реннюю мембранную поверхность митохондрии. Пространство между кристами заполнено гомогенным или тонкогранулярным веществом, ко­торое называется матриксом митохондрии. В матриксе обычно встре­чаются очень мелкие рибосомы и тонкие нити - фибриллы митохонд- риальной ДНК.

Основная функция митохондрий - синтез АТФ из АДФ, т. е. обес­печение энергетических потребностей клетки. Молекулы богатой энер­гией АТФ выходят из митохондрий и используются для поддержания процессов жизнедеятельности клетки, ее деления, поглощения и выде­ления веществ, для различных синтезов. При этом АТФ опять превра­щается в АДФ, которая поступает в митохондрии. Энергия, запасаемая в молекулах АТФ, получается в результате окисления в митохондриях различных питательных веществ, главным образом Сахаров. Это слож­ный процесс, он протекает при участии разнообразных ферментов, но­сит ступенчатый характер и называется окислительным фосфорилиро- ванием.

Развитие митохондрий в клетке находится под контролем ядра, поэтому они являются полуавтономными органеллами.

Лизосомы - еще один органоид клетки. Это довольно малень­кие округлые тельца. Они покрыты оболочкой - липопротеиновой мембраной. Содержимое лизосом - ферменты, переваривающие бел­ки, углеводы, нуклеиновые кислоты и липиды. Оболочка лизосомы пре­пятствует выходу ферментов из органоидов в гиалоплазму. Предпола­гают, что лизосомы - продукт деятельности аппарата Гольджи. Это оторвавшиеся пузырьки, в которых аппарат Г ольджи аккумулировал переваривающие ферменты. Те части клеток, которые отмирают в про­цессе ее развития, разрушаются с помощью лизосом, вернее с помо­щью их ферментов. В умершей клетке лизосомы разрушаются, фер­менты оказываются в цитоплазме, и вся клетка, за исключением оболочки, подвергается перевариванию.

Структура хлоропластов высших растений прекрасно приспособ­лена к выполнению их главной функции - фотосинтеза.

В общем виде фотосинтез можно представить себе как процесс восстановления углекислого газа воздуха водородом воды с образованием органических веществ (в первую очередь глюкозы) и выделе­нием в атмосферу кислорода. Центральная роль в этом процессе при­надлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление экзотермических реакций фотосинтеза. Эти реакции подразделяются на световые и темновые. Световые реакции состоят в преобразовании световой энергии в химическую и фотолизе (разлогжении) воды. Они происходят на мембранах тилакоидов. Темновые реакции - восстановление углекислого газа водородом воды до углеводов - протекают в строме хлоропластов. Кроме того, в хлоропла­стах происходит синтез АТФ из АДФ. Этот процесс называется фот-фосфорилированием, т. к. источником энергии является солнечный свет. Характеризуя функции хлоропластов, следует указать на то, что они способны к синтезу белков, выполняющих роль ферментов в световых реакциях, некоторых липидов, аминокислот, полисахаридов. Синтезиру­емые хлоропластами вещества могут откладываться в них же про за­пас в виде крахмальных зерен, белковых и липидных включений.

Хромопласты представляют собой пластиды желтого или оранже­вого, иногда даже красного цвета. Они встречаются в клетках многих лепестков, зрелых плодов, корнеплодов. Яркий цвет этих органов обусловлен желтыми и оранжевыми пигментами - каротиноидами, сосре­доточенными в хромопластах.

По происхождению хромопласты обычно представляют собой результат дегенерации хлоропластов. Исключение составляют хромопласты моркови, которые возникают не из хлоропластов, а из лейкопластов или непосредственно из пропластид. Хромопласты вообще не могут превращаться в другие типы пластид. Значение хромопластов в обмене веществ выяснено еще очень мало. Косвенное значение хромопластов состоит в том, что они обусловливают яркую окраску цветов и плодов,

привлекающую насекомых для перекрестного опыления и других животных для распространения плодов.

Лейкопласты - это мелкие бесцветные пластиды. Обнаружить их можно только в случае накопления внутри них крупных включений. Они встречаются во взрослых клетках, скрытых от действия солнечно­го света: в корнях, корневищах, клубнях, семенах, сердцевине стебля, а также в клетках, подвергающихся сильному прямому освещению (клет­ки эпидермиса). Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон.

Лейкопласты - органоиды, связанные с образованием запасных питательных веществ - крахмала, белков и жиров. Деятельность лейкопластов специализирована: одни из них накапливают крахмал и на­зываются амилопластами, другие белки (это протеопласты или алейронопласты), третьи - масла (олеопласты).

Таким образом, и крахмал, и запасной белок, и капли масла явля­ются продуктами жизнедеятельности пластид, причем каждый из них может накапливаться не только в лейкопластах, но и в хлоропластах и хромопластах. Наиболее распространенные и важные образования среди вклю­чений - крахмальные зерна. Запасной крахмал растений - основной тип запасных питательных веществ растений. Кроме того, он является самым важным соединением, используемым в пищу растительноядны­ми животными. Громадное значение имеет крахмал как источник пищи для людей. В растениях он может быть в виде ассимиляционного (пер­вичного) крахмала. Он образуется в хлоропластах на свету. Ассими­ляционный крахмал - продукт непостоянный и откладывается только при избытке растворимых углеводов в клетке. Ночью он гидролизуется до сахара и транспортируется в другие части растений. В амилопластах происходит образование вторичного запасного крахмала.

Ядро. Ядро может функционировать только в цитоплазматической среде. Это - место хранения и воспроизводства наследствен­ной информации, определяющей признаки данной клетки и всего орга­низма в целом, а также центр управления синтезом белка. Если из клетки удалить ядро, то она вскоре погибнет. Обычно в клетке одно ядро, но у некоторых видов водорослей и у грибов многоядерные клет­ки. А бактерии и сине-зеленые водоросли не имеют оформленного ядра, вещества, входящие в его состав, содержатся у них в цитоплазме. Следовательно, ядро находится в распыленном состоянии.

Форма ядра разнообразна, но обычно соответствует форме клетки. Размеры ядра колеблются от 1 до 25 мкм, в зависимости от растения.

В процессе онтогенеза форма, размер и местонахождение ядра в клетке могут изменяться. Общий план строения ядра одинаков у всех клеток растений и животных. Оно состоит из следующих органелл: ядерной оболочки, нуклеоллазмы, хромосом, ядрышек.

Ядерная оболочка отграничивает содержимое ядра от цитоплаз­мы, состоит из двухслойной мембраны толщиной 10 нм каждая, а раз­мер межмембранного пространства варьирует. Ядерная оболочка контролирует обмен веществ между ядром и цитоплазмой, способна к синтезу белков и липидов.

Нуклеоплазма представляет собой коллоидный раствор, в кото­ром размещены хромосомы и ядрышки. В состав нуклеоплазмы входят различные ферменты, нуклеиновые кислоты. Она не только осуществляет связь между органеллами ядра, но и трансформирует вещества, проходящие через нее. В отдельных случаях в нуклеоплазме можно заметить многочисленные едва различные точки, придающие содержи­мому зернистый вид. Вещества, образующие зернышки, получили на­звание хроматина. В неделящемся ядре хромосомы образуют почти невидимую сеть - хроматиновую сеть и ядерную сеть.

Во время деления ядра хромосомы максимально конденсируют­ся, становятся короткими и толстыми. Выполняют функцию распреде­ления и переноса генетической информации.

Каждый вид растений содержит в клетке строго определенное число хромосом.

Ядрышко. Обычно это сферическое тельце диаметром 1 - 3 мкм, состоящее в основном из белка и РНК. Ядрышко обычно контактирует со вторичной перетяжкой хромосомы, называемой организа­тором ядрышка, на которой происходит матричный синтез р-РНК (рибосомная). Затем р-РНК объединяется с белком, в результате образуются гранулы рибонуклеопротеидов - предшественников рибосом, которые попадают в нуклеоплазму и через поры ядерной оболочки проникают в цитоплазму, где заканчивается их оформление.

Ядро - центральный органоид клетки. Если его удалить из клет­ки, то она умрет. С другой стороны, ядро не может существовать самостоятельно без других органоидов, так как оно зависит от них в энер­гетическом отношении.

Основная функция ядра - управление процессами обмена ве­ществ роста и развития клетки. Все признаки и свойства клетки и ее органоидов определяются в конечном счете ее ядром. Оно передает в систему цитоплазмы ту информацию, которая определяет направление синтеза белка. Ядро содержит хромосомы, в которых записана наслед­ственная информация, позволяющая клетке выразить ее индивидуаль­ность. Ядро может играть и структурно образовательную роль.

ДЕЛЕНИЕ КЛЕТКИ

Известно, что клетки размножаются путем деления. При этом про­цессе ядро клетки не образуется из каких-нибудь других органелл и не возникает непосредственно в цитоплазме. Возникновение новых ядер всегда связано с делением уже существующих. Каждая из дочерних клеток дол­жна нести в своем ядре полный и одинаковый объем наследственного вещества, точно такого же, какой содержится в ядре материнской клетки.

Митоз

Равное и полное распределение наследственного вещества меж­ду дочерними клетками обеспечивает специальный процесс деления ядра, называемый митозом.

В общем мы можем определить митоз как универсальную форму деления ядра, в общих чертах сходную у растений и животных.

Что мы можем наблюдать в процессе митоза? Во-первых, удвое­ние вещества хромосом, второе - изменение физического состояния и химической организации хромосом, третье - расхождение дочерних, точнее - сестринских, хромосом к полюсам клетки, и, наконец, последу­ющее деление цитоплазмы и полное восстановление двух новых ядер.

Таким образом, в митозе заложен весь жизненный цикл ядерных генов: удвоение, распределение и функционирование. В результате за­вершения митотического цикла новые клетки оказываются с равным наследством.

Последовательность событий, происходящих между образовани­ем данной клетки и ее делением на дочерние клетки, называют клеточ­ным циклом.

При делении ядро проходит пять последовательных стадий: ин­терфазу, профазу, метафазу, анафазу и телофазу.

Между двумя последовательными делениями клетки ядро нахо­дится в стадии интерфазы.

В этот период оно имеет сетчатую структуру, образуемую хрома- тиновыми нитями, которые в следующей фазе формируются в хромо­сомы. Хотя интерфазу иначе называют фазой покоящегося ядра, на самом деле метаболические процессы в ядре в этот период соверша­ются с наибольшей активностью.

Профаза - первая стадия подготовки ядра к делению. В профазе сетчатая структура ядра постепенно превращается в хромосомные нити. С самой ранней профазы можно наблюдать двойную природу хромо­сом. Это говорит о том, что в ядре именно в ранней или поздней ин­терфазе осуществляется наиболее важный процесс митоза - удвоение, или редупликация, хромосом, при котором каждая из материнской хро­мосом строит себе подобную - дочернюю. Вследствие этого каждая хромосома выглядит продольно удвоенной. Однако эти половинки хро­мосом, которые называются сестринскими хроматидами, удерживаются вместе одним общим участком - центромерой. В профазе хромосомы претерпевают процесс скручивания - спирализации по своей оси, что приводит к их укорочению и утолщению. Важно подчеркнуть, что в про­фазе каждая хромосома в кариолимфе располагается случайно.

Существенным признаком окончания профазы является растворе­ние оболочки ядра, в результате чего хромосомы оказываются в об­щей массе цитоплазмы и кариоплазмы. Этим заканчивается профаза, и клетка вступает в метафазу.

Метафазой называют стадию окончания расположения хромо­сом на экваторе веретена. Характерное расположение хромосом в эк­ваториальной плоскости называют экваториальной, или метафазной, пла­стинкой. Расположение хромосом по отношению друг к другу - чаще всего случайное. В метафазе хорошо выявляются число и форма хро­мосом. Каждая хромосома располагается так, что ее центромера нахо­дится точно в экваториальной плоскости. Все остальное тело хромо­сомы может лежать вне ее.

Анафазой называют следующую фазу митоза. В ней делятся центромеры, и хроматиды, которые теперь уже можно называть дочерними хромосомами, расходятся к полюсам. При этом отталкиваются друг от друга в первую очередь центромерные участки, а затем расходятся к полюсам центромерами вперед и сами хромосомы. Причем расхож­дение хромосом в анафазе начинается одновременно - «как по ко­манде» - и завершается очень быстро.

В телофазе дочерние хромосомы деспирализуются и утрачивают видимость. Образуется оболочка ядра и само ядро. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, которое оно претерпевало в профазе. В конце концов восстанавливаются и ядрышки, причем в том количестве, в каком они присутствовали в родительских ядрах. В это же время начинается симметричное раз­деление тела клетки. Этим митотический цикл заканчивается.

Продолжительность митоза зависит от типа ткани, физиологиче­ского состояния организма, внешних факторов и длится от 30 мин. до 3 часов.

Мейоз, или редукционное деление, происходит у высших рас­тений только при образовании спор полового размножения, из кото­рых впоследствии сложным путем возникают половые клетки. Фазы мейотического деления похожи на фазы митотического деления.

Существенной разницей между митозом и мейозом является то, что в начале мейоза гомологичные хромосомы сходятся - конъюгируют попарно, а впоследствии, - в анафазе, эти спаренные хромосомы расхо­дятся к противоположным полюсам, тогда как при митозе хромосомы не сходятся попарно, а удваиваются и к полюсам расходятся их половинки. В результате мейоза число хромосом в клетке уменьшается вдвое, т. е. редуцирует, поэтому и деление это назвали редукционным.

Половые клетки по сравнению с соматическими клетками тела имеют вдвое меньшее, так называемое гаплоидное (п), число хромосом. При оплодотворении, когда две половые клетки сливаются, число хро­мосом снова увеличивается вдвое, т. е. становится обычным, так назы­ваемым диплоидным (2п), характерным для данного вида.

Мейоз включает в сущности два следующих друг за другом деле­ния ядра, называемых соответственно первым и вторым мейотическим делением. В каждом из них можно выделить те же фазы, что и в обычном митозе.

Рассмотрим ряд характерных деталей мейоза, которыми он отли­чается от митоза. В профазе мейоза происходит целый ряд закономер­ных изменений хроматиновых нитей. Это следующие стадии:

1. лептотена, во время которой в ядре формируется обычное, диплоидное число хромосомных нитей;

2. зиготена, во время которой гомологичные хромосомы притяги­ваются и видно их параллельное расположение;

3. синапсис, во время которого все хромосомы собираются в один клубок у оболочки ядра;

4. пахитена, во время которой клубок хромосом распутывается, парные хромосомы переплетаются, обвивают друг друга, утолщаются, образуют биваленты;

5. диплотена, во время которой спарившиеся, гомологичные хро­мосомы в бивалентах отталкиваются друг от друга (сначала начинают отталкиваться их центромеры), начинают расходиться и при этом раз­рываться и обмениваться частями;

6. диакинез, во время которого биваленты хромосом максималь­но укорачиваются и утолщаются и, наконец, начинает образовываться веретено, и профаза переходит в метафазу.

Рис.3. Изменения, происходящие с ядром при митозе (А) и мейозе (Б)



После метафазы следуют анафаза и телофаза.

Итак, в результате первого мейотического деления образуются два ядра с половинным, или гаплоидным, набором хромосом, поэтому первое деление мейоза называют редукционным. Во втором делении каждое дочернее ядро вновь делится, но митотическим путем. Поэтому второе деление называют уравнительным, или эквационным. Следовательно, из каждой клетки, вступившей в мейоз, после двух последовательных деле­ний образуются четыре клетки с половинным числом хромосом.

Необходимо четко представлять значение митоза и мейоза, их сход­ство и различия. В основе мейоза лежит воспроизведение хромосом и их расхождение при делении ядра, поэтому основой мейоза является митоз. Принципиальное отличие митоза от мейоза состоит в следующем:

1. в митозе каждый цикл деления ядра связан с одной репродукцией хромосом, в мейозе два деления связаны с одной репродукцией;

2. в митозе каждая хромосома репродуцируется, и в анафазе дочерние хромосомы расходятся к полюсам. При этом гомологичные хромосомы ведут себя независимо. В результате деления каждая до­черняя клетка получает полный набор хромосом с одинаковым содер­жанием генов. В мейозе каждая пара гомологичных хромосом в про­фазе конъюгирует, и в дочерних ядрах происходит уменьшение числа хромосом ровно вдвое, соответствующее числу бивалентов. При этом каждая пара гомологов расходится независимо от других пар;

3. в силу отсутствия конъюгации хромосом в митозе и наличия ее в мейозе в последнем имеет место продолжительная и сложно проте­кающая профаза.

Мейоз был открыт русским ботаником Беляевым в 1891 году. Зна­чение мейоза состоит не только в обеспечении постоянства числа хро­мосом у организмов из поколения в поколение. Благодаря случайному распределению случайных хромосом и обмену их отдельных участков в мейозе возникающие впоследствии гаплоидные половые клетки со­держат разнообразнейшие сочетания хромосом.

Амитоз

Амитоз - это другой способ деления соматических клеток. Сущ­ность его состоит в том, что ядро делится на две или более частей без каких-либо предшествующих изменений структуры. Вслед за перешну­ровкой ядра следует деление цитоплазмы. При амитозе хромосомы распределяются между дочерними клетками неравномерно, поэтому не обеспечивается их биологическая равноценность. Но образовавшиеся клетки не теряют своей структурной организации.

Понравилась статья? Поделитесь ей
Наверх