Сырье для изготовления солнечных батарей. Производство солнечной батареи: технология и оборудование. Накопители лучей из селена, меди и индия

В качестве сырья используется кварцевый песок с высоким массовым содержанием диоксида кремния (SiO 2). Он проходит многоступенчатую очистку, чтобы избавиться от кислорода. Происходит путем высокотемпературного плавления и синтеза с добавлением химических веществ.

  • Выращивание кристаллов.

    Очищенный кремний представляет собой просто разрозненные куски. Для упорядочивания структуры и выращиваются кристаллы по методу Чохральского. Происходит это так: куски кремния помещаются в тигель, где раскаляются и плавятся. В расплав опускается затравка – так сказать, образец будущего кристалла. Атомы, располагаются в четкую структуру, нарастают на затравку слой за слоем. Процесс наращивания длительный, но в результате образуется большой, красивый, а главное однородный кристалл.

  • Обработка.

    Этот этап начинается с измерения, калибровки и обработки монокристалла для придания нужной формы. Дело в том, что при выходе из тигля в поперечном сечении он имеет круглую форму, что не очень удобно для дальнейшей работы. Поэтому ему придается псевдо квадратная форма. Далее обработанный монокристалл стальными нитями в карбид - кремниевой суспензии или алмазно - импрегнированной проволокой режется на пластинки толщиной 250-300 мкм. Они очищаются, проверяются на брак и количество вырабатываемой энергии.

  • Создание фотоэлектрического элемента.

    Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

  • Сборка модулей.

    Пластинки соединяются сначала в цепочки, потом в блоки. Обычно одна пластина имеет 2 Вт мощности и 0,6 В напряжения. Чем больше будет ячеек, тем мощнее получится батарея. Их последовательное подключение дает определенный уровень напряжения, параллельное увеличивает силу образующегося тока. Для достижения необходимых электрических параметров всего модуля последовательно и параллельно соединенные элементы объединяются. Далее ячейки покрывают защитной пленкой, переносят на стекло и помещают в прямоугольную рамку, крепят распределительную коробку. Готовый модуль проходит последнюю проверку – измерение вольт - амперных характеристик. Все, можно использовать!

  • В условиях постоянного повышения цен на энергоресурсы, все больше внимания уделяется альтернативным источникам электроэнергии. Таким путем снижается зависимость от централизованных поставок, улучшается экологическая обстановка. Одним из направлений является производство солнечных батарей, которое к настоящему времени в целом обеспечивает растущие потребности населения.

    Широким спросом пользуется продукция не только зарубежных изготовителей, но и российского производства. Технологические процессы уже достаточно отработаны, они постоянно развиваются и совершенствуются, способствуя повышению эффективности и качества изделий.

    Что такое солнечная батарея

    Первые эксперименты в области солнечной энергетики начались в середине прошлого века. Ведущие индустриальные страны попытались использовать термальные станции для получения электрической энергии. Данная технология предполагала нагревание воды концентрированными солнечными лучами, после чего она превращалась в пар. Затем этот пар под давлением подавался на турбины генератора, заставлял их вращаться, в результате чего начинала вырабатываться электроэнергия.

    В этих установках солнечная энергия неоднократно трансформировалась, поэтому их эффективность была на очень низком уровне. Постепенно, с развитием производства полупроводников, появились устройства, напрямую преобразующие солнечные лучи в электрический ток. Это стало возможно, благодаря фотоэлектрическому эффекту, открытому еще в 19-м веке. Но вплотную приблизиться к созданию настоящей солнечной батареи удалось только благодаря полупроводникам. Постепенно началось их массовое производство, в том числе и в РФ.

    Наиболее эффективным полупроводником оказался кремний, применяющийся в большинстве современных солнечных панелей. Под действием солнечных лучей верхняя пластина нагревается и атомы кремния начинают испускать электроны, занимающие места дырок в нижней пластине. Поскольку электроны стремятся занять свое исходное положение, они начинают двигаться снизу в сторону верхней пластины. Но, на свое место они сразу не попадают, а по соединительным проводникам поступают в аккумулятор и отдают часть энергии на его зарядку. После этого они занимают свое место и весь процесс начинается вновь. Он прекращается с наступлением темноты и значительно снижается в пасмурную погоду.

    Наибольший эффект получается от фотоэлементов, созданных на основе монокристаллического кремния, в том числе и российского производства. В таких кристаллах минимальное количество граней, что обеспечивает прямолинейное движение электронов.

    Как устроена солнечная панель

    В конструкцию панели входит определенное количество элементов, являющихся фотоэлектрическими преобразователями. С их помощью солнечная энергия превращается непосредственно в электрическую. Основным материалом для изготовления служит , выращенный искусственным путем. Они производятся по разным технологиям и отличаются коэффициентом полезного действия.

    Эффективность фотоэлементов определяется их полезной мощностью, которая зависит от напряжения и выходного тока. На состояние этих параметров оказывает влияние интенсивность солнечного излучения, попадающего на поверхность панели. Значение выходного тока зависит еще и от размеров фотоэлементов: чем ярче свет, тем сильнее генерация тока. При пасмурной погоде происходит резкое снижение зарядного тока и отдаваемой мощности.

    Соединение фотоэлементов между собой осуществляется с помощью . В первом случае это способствует увеличению выходного напряжения, а во втором - выходного тока. Обычно используется комбинированный способ, позволяющий улучшить оба показателя и сделать их наиболее оптимальными. Данное соединение обеспечивает надежную работу всей панели, даже, если какой-то из элементов вышел из строя.

    При попадании одного из фотоэлементов в тень, он на этот период сам становится потребителем тока из-за разрядки аккумулятора. В подобной ситуации возможен его перегрев и выход из строя. Чтобы этого не произошло, выполняется шунтирование диодами по 4 штуки на каждый элемент. При частичном попадании панели в тень, ток начинает проходить через диоды, что и спасает затененные места от перегревания.

    Весь набор фотоэлементов размещается в общем корпусе, соединяющем и скрепляющем всю конструкцию. Каркас изготавливается из алюминиевого профиля, а для защиты используется специальное закаленное стекло, покрытое отражающей пленкой. Шунтирующие диоды размещаются в распределительной коробке.

    Солнечная батарея не может отдавать выработанный ток непосредственно потребителю. Для этой цели используется специальное оборудование - , соединительные провода и другие детали.

    Разновидности кремниевых установок

    Прежде чем рассматривать изготовление солнечных батарей, необходимо изучить материалы, используемые в фотоэлектрическом слое элементов. Это связано с тем, что каждый материал требует собственной технологии производства и в конечном итоге влияет на характеристики и стоимость конкретного изделия.

    В большинстве солнечных панелей применяются кремниевые кристаллы. Разрабатываются батареи с другими материалами, однако, несмотря на их высокий , они не нашли широкого применения из-за своей высокой стоимости. В настоящее время производители солнечных батарей не изготовляют таких устройств, поскольку это неэффективно и нецелесообразно.

    Элементы на основе кремния обладают повышенной чувствительностью к нагреву. Для замеров электрической генерации используется базовая температура в 25 градусов. С каждым повышением ее на 1 градус происходит снижение эффективности панелей до 0,5%. Основой кремния служат размолотые кристаллы кварцевого песка, превращенного в порошок.

    В зависимости от способа производства, все панели разделяются на следующие виды.

    Монокристаллические

    Отличаются темно-синим цветом, равномерно распределенным по всей поверхности. Изготавливаются из наиболее чистого кремния, что позволяет получить лучший КПД, хотя и за высокую цену. Такая повышенная стоимость получается за счет сложности технологических процессов, ориентирующих кристаллы в одном направлении. В этом случае для максимального КПД требуется строго перпендикулярное падение лучей солнца на поверхность фотоэлементов.

    В связи с этим, монокристаллическим панелям необходимо дополнительное оборудование, обеспечивающее их вращение и приведение в нужное положение в течение дня. Среди них широким спросом пользуются российские солнечные панели.

    Поликристаллические

    Обладают неравномерным синим окрасом различной интенсивности по причине хаотичной ориентации кристаллов. В фотоэлементах используется кремний, не такой чистый как в монокристаллическом варианте, однако, из-за различной направленности кристаллов обеспечиваются хорошие показатели КПД даже в пасмурную погоду.

    Более низкие требования и неоднородная структура кремния существенно удешевляет его производство, что влияет и на конечную стоимость таких панелей. Им не требуется постоянная ориентация относительно солнца, поэтому они чаще всего устанавливаются на крышах частных домов и промышленных объектов.

    Панели с аморфным кремнием

    Технология изготовления совсем другая по сравнению с предыдущими вариантами. В данном случае применяется не чистый кремний, а гидрид кремния, разогреваемый до состояния пара и осаждаемый на специальную подложку. У таких панелей сравнительно низкий КПД - всего 8-9%, но и цена у них небольшая.

    Сегодня показатель КПД удалось поднять до 12%, но таких изделий на рынке еще очень мало, и они дорогие. На эффективность аморфных панелей не оказывает влияния даже значительное повышение температуры.

    Изготовление фотоэлементов

    На всех специализированных предприятиях производство солнечных батарей начинается с изготовления фотоэлементов. Для каждого типа кристаллов существует собственная технология производства.

    Монокристаллический кремний получается в результате термической обработки исходного сырья. На выходе получается слиток материала в виде прямоугольного бруска с однородной кристаллической решеткой и высокой степенью чистоты. Углы бруска обрезаются, а сам он разрезается на тонкие пластинки. В результате получаются квадраты с закругленными углами, которые используются в качестве фотоэлементов.

    Производство поликристаллических элементов более простое, поскольку не требуется выращивание кристаллов с однородной структурой. Здесь также используется термическая обработка сырья. После разрезания брусков получаются тонкие пластинки с видимой разнородной структурой и хаотичным расположением частичек. Свет, попадая на них, отражается на соседние частички, в результате чего, общая отражающая способность снижается примерно на 25%.

    Для улучшения поглощающих свойств поверхность пластинок последовательно обрабатывается щелочами и кислотами. Данную технологию применяет практически каждый завод по производству солнечных батарей.

    Аморфные панели изготавливаются методом напыления гидрида кремния на жесткую или гибкую поверхность. С целью придания определенных свойств, в распыленный материал добавляются различные наночастицы и микроэлементы.

    Готовые пластины покрываются специальным материалом, снижающим отражающие свойства. В противном случае, примерно 10% излучения отразится назад и выпадет из процесса генерации электрического тока. За счет покрытия, свет проникает максимально глубоко и не отражается обратно.

    Производство солнечных панелей

    Для сбора заряда на лицевую сторону пластины наносится металлизированная сетка с оптимальной толщиной линий и их расположением относительно друг друга. Как правило, используется специальная паста, содержащая серебро. Высокая проводимость серебра позволяет увеличить КПД фотоэлементов на 15%. Далее, из полученных фотоэлементов собираются солнечные батареи в общую конструкцию.

    Все производство готовых изделий можно условно разделить на несколько этапов:

    • В первую очередь выполняется тестирование, замеряют электрические характеристики. Для этот используют ксеноновые лампы, способные производить мощные вспышки. По итогам испытаний элементы сортируются и переходят на следующий этап.
    • Из готовых элементов выполняется формирование секций, укладываемых на стеклянную подложку. Для укладки используются специальные вакуумные захваты, чтобы исключить любое воздействие на пластины. Один блок состоит из 4-6 секций, а каждая секция включает в себя 9-10 фотоэлектрических пластин. Соединение блоков между собой осуществляется методом пайки, поэтому каждый собранный таким образом компонент, служит дольше.
    • Далее выполняется ламинирование соединенных блоков этиленвинилацетатной пленкой, после чего на поверхность наносится защитное покрытие. Все операции производятся на оборудовании с ЧПУ, а параметры ламинирования контролируются в течение всего процесса.
    • На последнем этапе готовая конструкция помещается в рамку из алюминиевого профиля. Все соединения выполняются клеем-герметиком. По окончании сборки готовые солнечные панели вновь тестируются на соответствие выдаваемых параметров нормативным показателям. Такие меры позволяют снизить процент брака и увеличить срок службы солнечных батарей.

    Производители солнечных батарей

    Солнечные батареи уже давно перешли из стадии экспериментов в широкое промышленное производство. Хорошую и качественную продукцию выпускают отечественные заводы. Вниманию потребителей предлагаются следующие российские производители солнечных панелей.

    Зеленоградская компания ЗАО «Телеком-СТВ» (Москва и Подмосковье)

    Их продукция примерно на 30% дешевле зарубежных аналогов. Панель, мощностью 100 Вт, стоит примерно 6000 рублей, при заявленном КПД 20%. Предприятие специализируется на выпуске монокристаллических панелей.

    Рязанский завод металлокерамических приборов (ЗМКП)

    Один из популярных в России завод. Основной упор также делается на монокристаллы. Налажен выпуск дополнительного оборудования - инверторов, контроллеров и других компонентов. Производятся панели небольшой мощности для зарядки мобильных устройств.

    Краснодарский завод «Сатурн»

    В технологиях применяются металлические, струнные, сетчатые и другие типы каркасов. Продукция компании «Сатурн» отличается высокими эксплуатационными характеристиками не только в обычных условиях, но и в космосе. Предприятие «Сатурн» выполняет полный цикл работ по проектированию, изготовлению и испытанию солнечных панелей, считается одним из лучших предприятий.

    НПП «Квант»

    Специализируются на выпуске солнечных панелей с двухсторонней чувствительностью. Кроме традиционных материалов, используют арсенид галлия. Самой популярной моделью является Квант КСМ-180П, мощностью 185 Вт, с напряжением 36 В. Срок эксплуатации, заявленный изготовителем, составляет 40 лет, ориентировочная стоимость - 20000 рублей.

    Думая над идеей создания бизнеса, предпринимателям можно обратить внимание на «инновационные» направления, которые только начинают развиваться на потребительском рынке. Это несет значительные риски для бизнесмена – важно все досконально продумать, чтобы не прогореть на старте. Одна из таких сфер – выпуск солнечных панелей. И если на зарубежном рынке подобные изделия уже давно используются простыми обывателями, то для наших соотечественников – это диковинная новинка. Солнечные панели российского производства предлагают не более десятка производителей. А значит – у вас есть шанс покорить это направление

    Наша оценка бизнеса:

    Стартовые инвестиции – от 300000руб.

    Насыщенность рынка – низкая.

    Сложность открытия бизнеса – 5/10.

    Солнечные батареи – изделия, позволяющие «забирать» энергию солнца на подогрев воды, отопление помещений, работу техники. Отличный вариант для дачи и загородных домов, позволяющий сэкономить на подведении коммуникаций и оплате счетов за электричество и газ. Примерный показатель мощности – 1 м2 такого коллектора за час может нагреть 100 л воды.
    Перед тем как составлять подробный бизнес-план не помешает изучить рынок и понять, а выгодно ли вообще запускать в конкретном регионе бизнес в этом направлении. Открыть завод по производству солнечных панелей будет выгодно в тех районах, где значительную часть года светит солнце – только тогда продукция будет востребована на рынке. Ничего удивительного – как люди смогут использовать солнечную энергию там, где полярные ночи? Проанализируйте также и уровень конкуренции. Но тут вряд ли возникнут какие-то проблемы – производство солнечных панелей в России совсем не развито.

    Бизнес выгоден по нескольким причинам:

    • невысокие затраты на старте,
    • простота технологии,
    • большие возможности для развития,
    • огромный рынок сбыта.

    Несмотря на массу достоинств, производство и продажа солнечных панелей потребует продуманной маркетинговой стратегии. И именно новизна продукта на рынке вызовет проблемы – придется прилагать массу усилий, чтобы реализовывать коллекторы. Но хорошее качество изделий послужит лучшей рекламой.

    Реально ли самостоятельно изготовить солнечные панели?

    Технология производства солнечных панелей достаточно сложна. Организовывая дело, лучше привлечь к делу специалиста, знающего физику и электромеханику. И пусть «консультанту» придется заплатить, зато он поможет наладить рентабельное дело.

    Первые трудности возникнут на этапе подбора сырья. Для выпуска изделий вам потребуются следующие материалы:

    • поли- и монокристаллический кремний,
    • алюминиевые рамки,
    • сотовый полипропилен,
    • сотовый поликарбонат,
    • провода,
    • электрические преобразователи.

    Изготовление солнечных панелей как бизнес можно построить и по другому пути – вы заказываете у сторонних компаний уже готовые «детали», а перед установкой просто собираете их. В данном случае, не придется тратить денег на сложное оборудование. Но ожидают другие трудности – удорожание готовых изделий, поскольку качественные детали стоят немало. Если запланировали такое развитие будущего предприятия, наладьте контакты с надежными поставщиками, чтобы получать составные элементы для батарей высокого качества.

    Солнечные панели для дома производятся по нескольким технологиям. И наиболее изученной из всех стала именно кремниевая методика. Она состоит из следующих этапов:

    • Разрезание кремниевых пластин их очистка.
    • Травление поверхности кремниевой пластины и ее структурирование.
    • Нанесение фосфора на пластину и его вжигание.
    • Нанесение антиотражающего слоя.
    • Металлизация поверхности.
    • Сушка пластин.
    • Присоединение электроконтактов на лицевой стороне коллектора.
    • Выравнивание пластины.
    • Обрамление пластин алюминиевыми рамками.
    • Тестирование готового коллектора.

    Какое оборудование потребуется?

    Следующее, что предстоит сделать предпринимателю после изучения технологии – купить оборудование для производства солнечных панелей. Только полная автоматизация производства позволит поставлять на рынок изделия высокого качества. При этом из себестоимость будет ниже, чем если вы решите работать на закупаемых деталях.

    Для организации домашнего бизнеса вам вполне хватит «стандартного» набора мастера – электродрель, лобзики, пилы, уровень.

    Чтобы получить гибридные солнечные панели, потребуется производственная линия, состоящая из следующих наименований оборудования:

    • резательная лазерная машина,
    • ламинатор,
    • обрамляющая машина,
    • машина для очистки поверхности пластин,
    • «инспекционные» столы,
    • автоматы для проверки коллекторов под высоким напряжением.

    Достать производственную линию в России будет сложно – наши заводы пока не выпускают таких высокотехнологичных станков. Остается только искать поставщиков за границей – бизнесмены чаще заказывают линии в Европе и Китае. Цена оборудования для изготовления солнечных панелей варьируется в широком диапазоне, в зависимости от мощности и комплектации. Азиатскую линию небольшой производительности вы купите не менее чем за 5000000 руб. И это далеко не предел – есть полностью укомплектованные заводы, стоимость которых достигает 10000000 руб.

    Желательно позаботиться о создании собственного автопарка. Так вы будете предлагать клиентам услугу доставки и сами выезжать на объекты для установки заказанных батарей. Это будет гораздо выгодней, чем каждый раз нанимать стороннее транспортное средство.

    Покупая станок для солнечных батарей, узнайте у продавца, предлагает ли он услугу пуско-наладки и монтажа линии – это значительно упростит дело. Но скорее всего, за «услугу» придется доплатить.

    Требование к помещению и найм персонала

    И если для сборки панелей из отдельных деталей вам не потребуется больших площадей, то в случае с полноценным предприятием без аренды цеха не обойтись. Тут тоже предстоят вложения, поскольку площадь необходимо тщательно подготовить, чтобы технология осуществлялась по всем правилам. Потребуются – вентиляционные системы, отопление, водоснабжение, трехфазное электричество, обеззараживающие установки. В цехе должна соблюдаться чистота, поскольку предстоит вести высокоточную техническую работу. Потребуется площадь не менее 300 м2.

    Домашний бизнес можно вести и в собственном гараже. Выполнив заказ, вы станете выезжать на место для установки коллектора.

    Гибкие солнечные панели должны выпускаться под четким надзором специалиста. Помимо рабочего персонала, пригласите на производство квалифицированных сотрудников, имеющих опыт в работах со сложной техникой. А вот найти специалистов, которые уже работали в подобных цехах в России, будет практически нереально – если только приглашать людей из-за границы.

    Рентабельность планируемого бизнеса

    Чтобы открыть бизнес по сборке солнечных панелей, потребуется не так много вложений – от 300000 руб. Но если говорить о полноценном предприятии, то инвестиции возрастут в десятки раз – от 5500000 руб. К делу тогда придется привлекать сторонних инвесторов, что очень сложно, учитывая новизну направления – не каждый согласится отдать свои деньги.

    Окупаться затраты начнут, когда будут отлажены каналы сбыта и продукция станет популярной в конкретном регионе (а потом и за его пределами). Рыночная цена солнечных панелей российского производства – не менее 20000 руб за коллектор площадью 2 м2. При этом себестоимость их на 50-100 % ниже – отличные показатели рентабельности! Плюсуйте к выручкам еще и стоимость услуг по установке – а это еще как минимум 30000-50000 руб за заказ. Значит, ставьте перед собой цель продвижения продукции на рынке.

    И если поначалу купить солнечные панели российского производства желающих практически не будет из-за новизны продукта и минимума отзывов от потребителей, то со временем популярность их будет только возрастать. Чтобы раскрутить предприятие, задействуйте все рекламные возможности – объявления в журналах и газетах, сайт в интернете, реклама на ТВ и радио, обзвоны потенциальных заказчиков. Предстоят внушительные траты на рекламу – но и эти вложения вполне себя окупят, если реклама начнет «работать», привлекая заинтересованных покупателей.

    "Зеленая" энергетика последние годы развивается достаточно стремительно. В Китае в прошлом году (в 5 раз больше площади Манхеттена). Так же хорошо растет солнечная энергетика и в России.

    Но рассчитывая, что наше будущее будет состоять сплошь из солнечных электростанций нужно не забывать следующее...

    Производство солнечных панелей является энергоемким процессом. В настоящее время большая часть энергии, используемой для создания солнечных панелей, связана с переработкой ископаемого сырья, поэтому даже производство этих экологически полезных продуктов может способствовать загрязнению и глобальному потеплению.Приблизительно 600 кВтч энергии используется для производства каждого квадратного метра солнечных батарей, чего достаточно для освещения 1000 лампочек мощностью 60 Вт в течение десяти часов. Средняя энергосистема использует около двух или трех панелей, каждая из которых имеет площадь около 2 м2. При установке в выгодном месте солнечная панель может производить до 200 кВтч на квадратный метр электроэнергии в год.

    Поэтому энергия, используемая в процессе производства панели, компенсируется только через несколько лет эксплуатации.


    Исходным материалом для изготовления солнечных батарей служит трихлорсилан, ядовитый и взрывоопасный продукт. При его перегонке и восстановлении при помощи водорода, получают чистый кремний. Побочным продуктом, на этом этапе производства, является соляная кислота. Далее, кремний плавят и получают слитки, из которых делают элементы солнечных батарей. Для производства солнечных панелей требуется использование многих опасных химических веществ. Яды, такие как мышьяк, хром и ртуть, также являются побочными продуктами производственного процесса. Эти химические вещества могут нанести серьезный ущерб окружающей среде, если их правильно не утилизировать.

    При соблюдении технологий улавливания и очистки токсичных газов и жидкостей, производство не будет вредным, но часто, особенно в развивающихся странах, такое оборудование не устанавливается на предприятиях, что приводит к загрязнению окружающей среды. Энергия, используемая в производстве солнечных панелей, не является единственной энергетической затратой. Необходимо также учитывать энергию, используемую для их транспортировки, особенно если панели импортируются из другой части мира. Утилизация солнечных батарей - большая проблема. Многие из материалов, используемых для их изготовления, трудно перерабатывать, а сам процесс рециркуляции требует большого количества энергии.

    Недостатки использования солнечной энергии:
    1.- Неравномерное распределение энергии Солнца по поверхности планеты. Одни области более солнечные, чем другие;
    2. - В пасмурные дни и ночью солнечная энергия недоступна;
    3. - Необходимость использования больших площадей под солнечные источники энергии;
    4. - Содержание токсичных веществ в фотоэлементах;
    5. - Низкий КПД солнечных батарей, среднее значение эффективности не превышает 20%;
    6. - Высокая стоимость солнечных фотоэлементов;
    7. - Поверхность солнечных панелей и зеркал (для термовоздушных ЭС) нужно очищать от попадающих загрязнений;
    8. - При нагреве солнечных элементов, значительно падает эффективность их работы;
    9. - Сложная утилизация солнечных панелей.

    Идея по использованию энергии солнца внедряется очень активно, особенно в солнечных странах. Потому является перспективным предпринимательством. Но любой бизнес должен начинаться с правильно подобранного оборудования для производства солнечных батарей. Предлагаем вам ознакомиться с техническим оснащением бизнеса.

    Несмотря на дороговизну, оборудование дома солнечными батареями является более дешевым вариантом электроснабжения, чем проведение линий электропередач.

    Для чего используется энергия солнца?

    В наше время солнечные батареи широко используются в разных направлениях:

    • портативная электроника – зарядка аккумуляторов разной электротехники;
    • электромобили;
    • авиация – использование энергии солнца самолетами;
    • энергообеспечение зданий – отопление, нагрев воды, освещение и др., очень популярно в тропических и субтропических странах;
    • используются в космосе.

    Наиболее перспективный бизнес – обеспечение энергией домов и других зданий. Но так или иначе, вам нужно купить оборудование для производства солнечных батарей.

    Оборудование для установки солнечных батарей


    Аккумуляторы – накопители энергии солнца. Без них работа солнечных батарей невозможна. Они накапливают энергию днем, а по вечерам и ночам ее можно использовать.

    Инверторы – электронной устройство, которые переводят постоянное низкое напряжение заряженных аккумуляторов в высокое переменное промышленной частоты.

    Блок бесперебойного питания используют для устройств, на которые негативно влияет резкое исчезновение напряжения.

    Контроллер заряда батареи – устройство, что отвечает за своевременное подключение батареи с потребителями – если батарея заряжена не достаточно, контроллер не позволяет сделать соединение.

    Техническое оснащение для изготовления


    Оборудование для проверки высоким напряжением

    Каждый модуль проходит тестирование на пригодность. Проверяет электробезопасность, цепи на обрыв, проводит испытания высоким напряжением, сопротивляемость изоляции. Конструкция аппарата сделана из алюминиевых рам, сенсорных шторок. Её размеры вмещают модули разных размеров (3W – 400W).

    Характеристики:

    • габариты, мм: 2 500 х 1 500 х 900;
    • максимальный размер тестируемого модуля, мм: 1 400 х 2 100;
    • параметры теста: напряжение, время разгона, утечка тока;
    • ПО: цифровой микропроцессор с 50-ю программами;

    Стол для перемещения с позиционирующими прокладками

    Применяется к SPV модулям при разных действиях. Стол оснащают алюминиевыми направляющими. Столешница оборудована специальными шариками, по которым перемещают батарею. Пневматические прокладки в свою очередь удерживают объект в одном положении.

    Характеристики:

    • габариты, мм: 2 000 х 1 300 х 900;
    • максимальный размер тестируемого модуля, мм: 2 000 х 1 200;
    • неметаллические шарики;
    • полиуретановые прокладки;
    • анодированный алюминиевый каркас;
    • подъем ручным рычагом;
    • применение: обрезка краев, подключение соединительной коробки, укладка, соединение.

    Обрамляющая машина

    Склеивает края ленты, наносит мыльную воду, обрамляет и обжимает солнечные модули. Включает вращающейся стол с вакуумными присосками. Машиной может управлять один работник. Оборудование очень разносторонне в использовании, вмещает модули разных размеров (100W – 300W). Дополнительно прессует, обжимает и оклеивает углы.

    Характеристики оборудования:

    • габариты, мм: 3 000 х 1 900 х 970;

    Машина, очищающая стекло

    Это горизонтальная щеточная система с ПЛК. Имеет очень прочную структуру.

    Рабочая зона составляет 2 м на 1 м. Толщина стекла: 2 мм – 4 мм. Совершает 7 ступеней очистки, не оставляет разводов.

    Процесс очистки:

    • стекло очищается нейлоновой щеткой;
    • ополаскивание деионизированной водой;
    • перемещение в камеру выгрузки;
    • повторное ополаскивание деионизированной водой;
    • отжатие воды с подложек;
    • сушка холодным воздухом;
    • сушка горячим воздухом.

    Параметры оборудования:

    • габариты, мм: 4 700 х 2 000 х 1 300;
    • производительность: 30 панелей (2 м х 1 м.) за 1 час;
    • размер стекла, мм: 300х300 – 2 000х1 000;
    • многоступенчатая очистка по стандартам РV;
    • материал: полипропилен.

    Оборудование для резки ячеек


    Разрезание проводят волоконным лазером. С его помощью можно получить любые размеры. За одну порезку получается 4 ячейки. Установка очень компактная, имеет удобную конструкцию.

    Характеристики:

    • размер аппарата, мм: 2 000 х 1 500;
    • размер стола, мм: 400 х 400 х(4 ячейки 156 мм х 156 мм);
    • дисплей: Pentium 4, ПО для лазерной резки
    • лазер: волокнистый;
    • воздушное охлаждение;
    • держатель: вакуумная присоска;
    • минимальный размер рамы, мм: 994 х 666 х 50;
    • гидравлический процесс обрамления.

    Зеркальный инспекционный стол

    Это важное оборудование для солнечных батарей. Оно используется для визуального контроля солнечных модулей. С помощью зеркала проводится осмотр, можно обнаружить различные дефекты: смещение ячеек, повреждение и др. Этот этап проводится до ламинации.

    Характеристики:

    • максимальный размер модуля, мм: 2 000 х 1 000;
    • материал столешницы: стекло или акрил;
    • ручной осмотр с помощью зеркала;
    • наличие освещения.

    Ламинаторы солнечных PV модулей

    Ламинация защищает устройство от влияния окружающей среды. В качестве покрытия используют специальные органические вещества. Чтобы не было попадания молекул воздуха внутрь устройства, при ламинации используют вакуум.

    Оборудование состоит с ламинирующей камеры (высоколегированный алюминиевый сплав). Камера делится на верхнюю и нижнюю. Между ними находится кремниевая прокладка. Весь процесс нагревания камеры контролирует заданная программа. Оборудование имеет предохранители для защиты системы и работника.

    Характеристики:

    • работая температура: 150°C;
    • может работать с 3-фазным питанием;
    • автоматический и ручной режим.

    Видео: возможности современного производства

    Производство солнечных батарей на примере ЗАО “Телеком-СТВ”

    Понравилась статья? Поделитесь ей
    Наверх