Сечение конуса проходящее через ось есть круг. Вопросы к главе VI Цилиндр, конус и шар. На основаниях цилиндра взяты две не параллельные друг другу хорды. Может ли кратчайшее расстояние между точками этих хорд быть: а) равным высоте цилиндра; б) больше вы

В сечении конической поверхности плоскостью получаются кривые второго порядка - окружность, эллипс, парабола и гипербола. В частом случае при определенном расположении секущей плоскости и когда она проходит через вершину конуса (S∈γ), окружность и эллипс вырождаются в точку или в сечении попадает одна или две образующих конуса.

Дает - окружность, когда секущая плоскость перпендикулярна к его оси и пересекает все образующие поверхности.

Дает - эллипс, когда секущая плоскость не перпендикулярна к его оси и пересекает все образующие поверхности.

Построим эллиптическое ω плоскостью α , занимающей общее положение.

Решение задачи на сечение прямого кругового конуса плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость α из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости α и проекцию поверхности конуса ω плоскостью дает эллипс, так как секущая плоскость пересекает все образующие конуса. Эллипс проецируется на плоскости проекций в виде кривой второго порядка.
На следе плоскости α V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след αV 1 . Линия сечения конуса ω - точки A" 1 , E" 1 совпадает здесь со следом плоскости. Далее построим вспомогательную секущию плоскость γ3, проведя на фронтальной плоскости проекций V 1 ее след γ 3V 1 . Вспомогательная плоскость пересекаясь с конической поверхностью ω даст окружность, а пересекаясь с плоскостью α даст горизонтальную прямую h3. В свою очередь прямая пересекаясь с окружностью дает искомые точки C`и K` пересечения плоскости α c конической поверхностью ω . Фронтальные проекции искомых точек C" и K" построим как точки принадлежащие секущей плоскости α .

Для нахождения точки E(E`, E") линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 2 H , которая пересечет плоскость α по прямой 1-2(1`-2`, 1"-2") . Пересечение 1"-2" с линией связи дает точку E" - наивысшую точку линии сечения.

Для нахождения точки указывающей границы видимости фронтальной проекции линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 5 H и находим горизонтальную проекцию F` искомой точки. Также, плоскость γ 5 H пересечет плоскость α по фронтали f(f`, f") . Пересечение f" с линией связи дает точку F" . Соединяем полученные на горизонтальной проекции точки плавной кривой, отметив на ней крайнюю левую точку G - одну из характерных точек линии пересечения.
Затем, строим проекции G на фронтальных плоскостях проекций V1 и V. Все построенные точки линии сечения на фронтальной плоскости проекций V соединяем плавной линией.

Дает - параболу, когда секущая плоскость параллельна одной образующей конуса.

При построении проекций кривых - конических сечений необходимо помнить о теореме: ортогональная проекция плоского сечения конуса вращения на плоскость, перпендикулярную к его оси, есть кривая второго порядка и имеет одним из своих фокусов ортогональную проекцию на эту плоскость вершины конуса.

Рассмотрим построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса (SD) .

В сечении получится парабола с вершиной в точке A(A`, A") . Согласно теореме вершина конуса S проецируется в фокус S` . По известному =R S` определяем положение директрисы параболы. В последующем точки кривой строятся по уравнению p=R .

Построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса, может быть выполнено:

С помощью вспомогательных горизонтально-проецирующих плоскостей проходящих через вершину конуса γ 1 H и γ 2 H .

Сначала определятся фронтальные проекции точек F", G" - на пересечении образующих S"1", S"2" и следа секущей плоскости α V . На пересечении линий связи с γ 1 H и γ 2 H определяться F`, G` .

Аналогично могут быть определены и другие точки линии сечения, например D", E" и D`, E` .

С помощью вспомогательных фронтально-проецирующих плоскостей ⊥ оси конуса γ 3 V и γ 4 V .

Проекциями сечения вспомогательных плоскостей и конуса на плоскость H , будут окружности. Линиями пересечения вспомогательных плоскостей с секущей плоскостью α будут фронтально- проецирующие прямые.

Дает - гиперболу, когда секущая плоскость параллельна двум образующим конуса.

Который исходит из одной точки (вершина конуса) и которые проходят через плоскую поверхность.

Бывает, конусом называется часть тела, которая имеет ограниченный объём и которая получена путем объединения каждого отрезка, которые соединяют вершину и точки плоской поверхности. Последняя, в таком случае, является основанием конуса , а конус называется опирающимся на данное основание.

Когда основание конуса является многоугольником - это уже пирамида .

Круговой конус - это тело, состоящее из круга (основание конуса), точки, которая не лежит в плоскости этого круга (вершина конуса и всех отрезков , которые соединяют вершину конуса с точками основания).

Отрезки, которые соединяют вершину конуса и точки окружности основания, называют образующими конуса . Поверхность конуса состоит из основания и боковой поверхности.

Площадь боковой поверхности правильной n -угольной пирамиды, вписанной в конус:

S n =½P n l n ,

где P n - периметр основания пирамиды, а l n - апофема.

По тому же принципу: для площади боковой поверхности усеченного конуса с радиусами оснований R 1 , R 2 и образующей l получаем такую формулу:

S=(R 1 +R 2)l .

Прямой и косой круговой конусы с равным основанием и высотой. Эти тела обладают одинаковым объёмом:

Свойства конуса.

  • Когда площадь основания имеет предел, значит, объём конуса тоже имеет предел и равен третьей части произведения высоты на площадь основания.

где S — площадь основания, H — высота.

Т.о., каждый конус, который опирается на это основание и имеющие вершину, которая находится на плоскости, параллельной основанию, имеют равный объём, так как их высоты одинаковые.

  • Центр тяжести каждого конуса с объёмом, имеющим предел, находится на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса можно выразить такой формулой:

где α — угол раствора конуса.

  • Площадь боковой поверхности такого конуса, формула:

а полная площадь поверхности (то есть сумма площадей боковой поверхности и основания), формула:

S=πR(l+R),

где R — радиус основания, l — длина образующей.

  • Объём кругового конуса , формула:

  • Для усечённого конуса (не только прямого или кругового) объём, формула:

где S 1 и S 2 — площадь верхнего и нижнего оснований,

h и H — расстояния от плоскости верхнего и нижнего основания до вершины.

  • Пересечение плоскости с прямым круговым конусом - это один из конических сечений.

Лекция 16. ПРОЕКЦИИ КОНУСА

Конус – тело вращения.

Прямой круговой конус относится к одному из видов тел вращения.

Коническая поверхность образуется прямой линией, проходящей через некоторую неподвижную точку и последовательно через все точки некото-

рой кривой направляющей линии . Неподвижная точка S называется вершиной. Основанием конуса служит поверхность образованная замкнутой направляющей.

Конус, основанием которого является окружность, а вершина S находится на оси

перпендикулярной основанию, проходящей через его середину, называется прямым кру-

говым конусом. Рис. 1.

Построение ортогональных проекций конуса, приведено на рис. 2.

Горизонтальная проекция конуса представляет собой окружность, равную основанию конуса, а вершина конуса S совпадает с ее центром. На фронтальную и профильную проекции конус проецируется в виде треугольни-

ка, ширина основания которого равна диаметру основания. А высота равна высоте конуса. Наклонные стороны треугольника – проекции крайних (очерковых) образующих конуса.

Построение конуса в прямоуголь-

ной изометрии приведено на рис. 2.

Построение начинаем с расположе-

ния аксонометрических осей OX, OY, OZ,

проведя их под углом 1200 друг к другу. Ось

конуса направим по оси OZ, и отложим на

ней высоту конуса, получив точку S. Прини-

мая точку O за центр основания конуса,

строим овал, представляющий основание

конуса. Затем проводим две наклонные ка-

сательные из т. S к овалу, которые будут

крайними (очерковыми) образующими кону-

са. Невидимую часть нижнего основания ко-

нуса выполним штриховой линией.

Построение точек на поверхности конуса в ортогональных и аксонометриче-

ской проекциях показано на рис. 2, 3.

Если на фронтальной проекции конуса Рис. 2 заданы точки А и В, то недостающие проек-

ции этих точек можно построить двумя способами.

Первый способ : с помощью проекций вспомогательной образующей проходящей через заданную точку.

Дано: фронтальная проекция точки А – точка (а’), расположенная в пределах видимой части конуса.

Через вершину конуса и заданную точку (a’) проводим прямую линию до основания конуса и получаем точку (e’) – основание образующей s’e’.

H. Найдем горизонтальную проекцию т. e в пределах видимой части окружности основания конуса, проведя проецирующую прямую e’e, и соединим полученную т. е с горизонтальной проекцией вер-

шины конуса s.

Так как искомая т. А принадлежит обра-

зующей s’e’ то она должна лежать на ее горизонтальной проекции. Поэтому с помощью линии связи мы переносим ее на линию se и по-

лучаем горизонтальную проекцию т. a. Профильная проекция a” т. А определя-

ется пересечением той же образующей s”e” на профильной проекции с линиями связи, переносящими т. а с горизонтальной и фронталь-

ной проекций.

Профильная проекция a” т. А в данном

случае невидимая, т. к. находится за проекцией крайней образующей s”4” и обозначается в круглых скобках.

Рис. 3 Второй способ : с помощью построения проекций сечения конической поверхности горизонтальной плоскостью Pv па-

раллельной основанию конуса и проходящей через заданную точку В. Рис. 3. Дано: фронтальная проекция точки В – т. b’, расположенная в пределах

видимой части конуса.

Через т. b’ проводим прямую, Pv параллельную основанию конуса, кото-

рая является фронтальной проекцией секущей плоскости P. Эта линия пересе-

кает ось конуса в т. 01’ и крайние образующие в т. k1’ и k3’. Отрезок прямой k1’k3’ является фронтальной проекцией сечения конуса через т. b’.

Горизонтальной проекцией этого сечения будет окружность, радиус которой определяется на фронтальной проекции как расстояние 01’k1’ от оси ко-

нуса до крайней образующей.

Так как точка b’ лежит в плоскости сечения, то с помощью линии связи переносим ее на горизонтальную проекцию сечения в пределах видимой части конуса.

Профильная проекция т. b” определяется как пересечение профильной

проекции сечения k2”k4” с линией связи, переносящей положение т. b с гори-

зонтальной проекции.

Построение точек на поверхности конуса в аксонометрии.

Строим конус в прямоугольной изометрии. Построение окружности основания конуса в аксонометрии повторяет построение основания цилиндра. (См. раздел 8.2.1.). Отложив на вертикальной оси высоту конуса, проводим две образующие – касательные к овалу основания.

Первый способ. Рис. 2.

Строим образующую SE: на оси X или Y откладываем координаты Х или

Y соответствующие т. Е на горизонтальной проекции и проведем через них линии параллельные оси Y или X соответственно. Пересечение их дает положение точки Е на основании конуса.

Соединим т. Е с вершиной конуса S и с центром основания т. 0. Рассмотрим полученный треугольник S0E: сторона 0S – ось симметрии конуса совпадающая с осью Z. Сторона SE – образующая конуса, на которой находится т. А. Сторона 0E - основание треугольника составляющая с осью Z угол 900 .

Рис. 4

Высоту т. А берем на фронтальной проекции по перпендикуляру от ос-

нования конуса до т. a’ и откладываем ее в аксонометрии на оси Z, то есть на стороне 0S.

Через полученную засечку проводим прямую в плоскости треугольника

параллельно основанию треугольника до пересечения с образующей SE. Таким образом, переносим высоту положения т. А на поверхность кону-

Второй способ. Рис. 3.

Строим сечение конуса плоскостью параллельной основанию и проходящей через т. В. Такое сечение конуса есть окружность с радиусом равным

отрезку ОК расположенной на высоте равной высоте т. В. В аксонометрии эта окружность строиться в виде эллипса (или заменяющего его овала).

Затем, на осях X и Y в основании конуса откладываем соответствующие

координаты X и Y т. В взятые с горизонтальной проекции и из точки их пересечения восстанавливаем перпендикуляр до пересечения с эллипсом сечения,

что определит положение т. В.

Сечения конуса.

В зависимости от направления в пространстве секущей плоскости, проходящей через конус, в сечении прямого кругового конуса могут получаться

различные плоские фигуры:

А – прямые (образующие) Б – гипербола

В – окружность

Г – парабола

Д – эллипс Конические сечения – эллипс, парабола и гипербола являются лекаль-

ными кривыми, которые строятся по точкам принадлежащим кривой сечения.

А. Сечение конуса вертикальной плоскостью проходящей через его вершину представляет собой прямые. Рис. 4.

На горизонтальной проекции конуса через точку S проводим линию Ph под произвольным углом к осям X и Y, которая является горизонтальной проекцией секу-

щей вертикальной плоскости. Эта линия

пересекает окружность основания конуса в двух точках a и b, а отрезок aob является горизонтальной проекцией сечения конуса.

Мысленно отбросим левую часть конуса от линии Ph и справа от нее получим горизонтальную проекцию усеченного ко-

Отрезки SA и SB - горизонтальные

проекции образующих конуса, по которым и проходит секущая плоскость Ph.

Строим образующие SA и SB на

фронтальной проекции, перенеся на нее точки A и B и соединив полученные точки a’ и b’ с вершиной s’. Треугольник a’s’b’ и будет фронтальной проекцией сечения

конуса, а линия s’3’ – крайней образующей конуса.

Рис. 5

Аналогично строим профильную проекцию сечения конуса, перенеся

точки a и b с горизонтальной проекции на профильную и соединив полученные точки a” и b” с вершиной конуса s”. Треугольник a”s”b” является профильной проекцией сечения конуса, а линия s”2” есть крайняя образующая конуса.

Построение аксонометрии. Рис. 4.

Далее с горизонтальной проекции конуса берем координаты по оси X или Y для точек A и B и переносим их на аксонометрические оси X или Y. Через полученные точки проводим вспомогательные линии параллельные осям Y

или X соответственно. Их пересечение с линией основания конуса позволяет получить точки A и B на аксонометрии. Соединив их между собой, и каждую из

них с вершиной конуса S, получим треугольник ABS являющийся сечением конуса вертикальной плоскостью P.

Б. Сечение конуса вертикальной плоскостью, не проходящей через его вершину, представляет собой гиперболу. Рис. 5.

Если вертикальная секущая плоскость P не проходит через вершину конуса, то она уже не совпадает с образующими его боковой поверхности, а наоборот – пересекает

На горизонтальной проекции конуса проводим секущую плоскость Ph на произвольном расстоянии от вершины S и парал-

лельную оси Y. В общем случае положение

секущей плоскости относительно осей X и Y может быть любое.

Линия Ph пересекает окружность основания конуса в двух точках a и b. Отрезок ab этой прямой есть горизонтальная проек-

ция сечения конуса. Часть окружности слева от линии Ph делим на произвольное коли-

чество равных частей, в донном случае на 12 и, затем каждую полученную точ-

ку на окружности соединяем с вершиной конуса s. Эти образующие пересека-

ются секущей плоскостью Ph и мы получаем ряд точек, которые принадлежат образующим и проекции сечения конуса ab одновременно.

Строим полученные образующие на фронтальной проекции конуса

Переносим с горизонтальной проекции все точки на основании конуса (a, 1, …,

5, b) и на фронтальной проекции получаем точки (a’, 1’, …, 5’, a’) и соединяем из с вершиной конуса s’. Проводим на фронтальной проекции через точку b’ секущую плоскость Pv перпендикулярно основанию конуса. Линия Pv пересекает

все образующие, и точки их пересечения принадлежат проекции сечения конуса.

Повторим построение всех образующих на профильной проекции конуса, перенеся на нее точки (a, 1, …, 5, b) с горизонтальной проекции. Полученные точки (a”, 1”, …, 5”, b”) соединим с вершиной s”.

На полученные образующие перенесем с фронтальной проекции точки пересечения соответствующих образующих с секущей плоскостью Pv. Полученные точки соединим кривой линией, которая представляет собой лекальную

кривую – гиперболу.

Построение аксонометрии. Рис. 5.

Рис. 6

Строим конус в аксонометрии, как описано выше.

Далее с горизонтальной проекции конуса берем координаты по оси X или Y для всех точек a, 1, …, 5, b и переносим их на аксонометрические оси X или Y находим их положение на основании конуса в аксонометрии. Соединяем

их последовательно с вершиной конуса S и получаем ряд образующих на поверхности конуса соответствующих образующим на ортогональных проекциях.

На каждой образующей найдем точку ее пересечения с секущей плоскостью P аналогично тому, как это было описано выше (см. построение точек на поверхности конуса, первый способ).

Соединив полученные на образующих точки лекальной кривой, а также точки A и B получим аксонометрическую проекцию усеченного конуса.

В Сечение конуса горизонтальной плоскостью. Рис. 6.

Сечение прямого кругового конуса горизонтальной плоскостью параллельной основанию – есть окружность.

Если рассечь конус на произвольной высоте h от основания конуса через точку a’

лежащую на его оси o’s’ плоскостью параллельной его основанию, то на фронтальной проекции мы увидим горизонтальную линию Pv являющуюся фронтальной проекцией секущей плоскости, которая образует сечение

конуса I’, II’, III’, IV’. На профильной проекции

W вид секущей плоскости и сечение конуса аналогичен и соответствует линии Pw.

На горизонтальной проекции сечение

конуса представляет собой круг в натураль-

ную величину, радиус окружности которого проецируется с фронтальной проекции как расстояние от оси конуса в точке a’ до точки I’, лежащей на крайней образующей 1’s’.

Построение аксонометрии. Рис. 6.

Строим конус в аксонометрии, как опи-

сано выше.

Затем на оси Z откладываем высоту h точки А от основания конуса. Через точку А проводим линии параллельные осям X и Y и строим окружность в

аксонометрии радиусом R=a’I’ взятым с фронтальной проекции.

Г Сечение конуса наклонной плоскостью, параллельной образующей. Рис. 7.

Строим три проекции конуса - горизонтальную, фронтальную и профильную. (см. выше).

На фронтальной проекции конуса проводим секущую плоскость Pv параллельно очерковой образующей s’6’на произвольном расстоянии от ее нача-

ла на основании конуса через т. a’(b’). Отрезок a’c’ есть фронтальная проекция сечения конуса.

На горизонтальной проекции строим проекцию основания секущей плоскости Р через точки a, b. Отрезок ab – есть проекция основания сечения конуса.

Далее окружность основания конуса делим на произвольное количество частей и полученные точки соединяем с вершиной конуса s. Получаем ряд образующих конуса, которые последовательно переносим на фронтальную и профильную проекции. (см. пункт Б).

На фронтальной проекции след секущей плоскости Pv пересекает обра-

зующие и в пересечении дает ряд точек, которые принадлежат как секущей плоскости, так и образующим конуса одновременно.

Переносим линиями связи эти точки на проекции образующих на гори-

зонтальную и профильную проекции.

Полученные точки соединим кривой линией, которая представляет собой

лекальную кривую - параболу .

Построение аксонометрии. Рис. 7.

Строим аксонометрическую проекцию конуса, как описано выше.

всех точек (a, b, 1, …, 6) и переносим их на аксонометрические оси X или Y соответственно, определив, таким образом их поло-

жение на основании конуса в аксонометрии. Соединяем их последовательно с вершиной

конуса S и получаем ряд образующих на поверхности конуса, соответствующих образующим на ортогональных проекциях.

На каждой образующей найдем точку ее пересечения с секущей плоскостью P

аналогично тому, как это было описано выше (см. построение точек на поверхности конуса).

Д. Сечение конуса наклонной плоскостью, расположенной под произвольным углом к основанию конуса представляет собой эллипс. Рис. 8.

Строим три проекции конуса - горизонтальную, фронтальную и про-

фильную. (см. выше).

На фронтальной проекции конуса проводим линию секущей плоскости Pv под произвольным углом к основанию конуса.

На горизонтальной проекции, окружность основания конуса делим на произвольное количество равных частей (в данном случае на 12) и получен-

ные точки соединяем с вершиной конуса S. Получаем ряд образующих, которые с помощью линий связи, последовательно переносим на фронтальную и профильную проекции.

На фронтальной проекции секущая плоскость Pv пересекает все образующие, и полученные точки их пересечения принадлежат одновременно и се-

кущей плоскости и боковой поверхности конуса, являясь фронтальной проекцией искомого сечения.

Переносим эти точки на горизонтальную проекцию конуса.

Затем строим и профильную проекцию сечения конуса (см. выше), соединяя полученные точки лекальной кривой, которая представляет собой эл-

липс.

Построение натуральной величины сечения.

Лекальные кривые (эллипсы) на горизонтальной и профильной проекции представляют собой искаженные изображения сечения конуса.

Истинная (натуральная) величина сечения получается путем совмеще-

ния секущей плоскости P с горизонтальной плоскостью проекций H. Все точки сечения конуса на фронтальной проекции переносим на ось X при помощи циркуля, поворачивая их вокруг точки k". Далее, на горизонтальной проекции, линиями связи, параллельными оси Y продолжаем их до пересечения их с ли-

ниями связи, взятыми с горизонтальной проекции соответствующих точек. Пе-

ресечение горизонтальных и вертикальных линий связи соответствующих точек позволяет получить точки, принадлежащие натуральной величине сечения. Соединив их лекальной кривой, мы получим эллипс натуральной величины сечения конуса.

Построение аксонометрии усеченного конуса. Рис. 8.

Построение аксонометрии усеченного конуса выполняется путем нахождения точек принадлежащих сечению конуса любым из описанных выше способов (см. выше).

Построение развертки поверхности усеченного конуса. Рис. 8.

Предварительно построим развертку боковой поверхности не усеченного

конуса. Задаемся положением т. S на листе и проводим из нее дугу радиусом равным натуральной величине длины образующей конуса (например, s’1’или s’7’). Задаемся положением т. 1 на этой дуге. Последовательно откладываем от нее столько одинаковых отрезков (хорд) на сколько частей разделена окружность основания конуса. Полученные на дуге точки 1, 2, …, 12, 1 соединяем с т. S. Сектор 1S1 представляет собой развертку боковой поверхности не усе-

ченного конуса. Пристроив к ней в нижней части (например, к т. 2) натуральную величину основания конуса в виде круга взятого с горизонтальной проекции мы

получим полную развертку не усеченного конуса.

Для построения развертки боковой поверхности усеченного конуса необходимо определить натуральную величину всех усеченных образующих. На

фронтальной проекции все точки сечения перенесем на очерковую образующую s’7’ линиями параллельными основанию конуса. Затем каждый отрезок образующей от т. 7’ до соответствующей точки сечения переносим на соответствующую образующую на развертке. Соединив эти точки на развертке, получим кривую линию, соответствующую линии сечения боковой поверхности ко-

Затем к линии сечения на развертке (например, к образующей S1) при-

страиваем эллипс натуральной величины сечения полученный на горизонтальной проецирующей плоскости Н.

Развертки поверхности геометрических тел представляют собой чертежи

– выкройки из бумаги и служат для выполнения макета фигуры.

При решении задач школьного курса геометрии рассматривают два вида сечений конуса плоскостью:

· сечения, перпендикулярные оси конуса – круги ;

· сечения, проходящие через вершину конуса – равнобедренные треугольники ;

Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением .

Виды сечений конической поверхности плоскостью:

·
сечение, перпендикулярное оси конической поверхности – окружность ;

· сечение, параллельное одной из образующих – парабола т.е. ________________________________

· сечение, параллельное двум образующим – гипербола, т.е. множество точек плоскости, модуль разности расстояний от которых до двух заданных точек плоскости есть величина постоянная.

· сечение, не перпендикулярное и не параллельное оси конической поверхности – эллипс .

· сечение, проходящее через две образующие – пара пересекающихся прямых ;

Докажем два утверждения.

Утверждение 2. Сечение конической поверхности, параллельное двум образующим конуса – гипербола.

Пусть плоскость α, параллельная двум образующим конуса, пересекает поверхность конуса по некоторой линии l . Докажем, что эта линия – гипербола.

Рассмотрим два равных шара, которые касаются боковой поверхности конуса и плоскости сечения. Пусть точки F 1 и F 2 – точки касания с плоскостью сечения. Через произвольную точку M линии l проведём образующую t . Пусть длина отрезка AA 1 этой образующей, заключённого между диаметральными плоскостями шаров, перпендикулярными образующим конуса, равна 2a . Тогда по свойству касательных, MF 1 =MA 1 , MF 2 = MA 2 , следовательно, |MF 1 –MF 2 |=|MA 1 –MA 2 =2a |, т.е. |MF 1 –MF 2 | = const , значит, линия l – эллипс.Š

Утверждение 3. Сечение конической поверхности, не перпендикулярное и не параллельное оси конической поверхности – эллипс .

Сделать чертёж и доказать самостоятельно.


2.4. Усечённый конус

Усечённым конусом называется часть конуса, расположенная между его основанием и секущей плоскостью, перпендикулярной оси конуса. Основание данного конуса и круг, полученный в сечении, называются основаниями усечённого конуса. Высотой усечённого конуса называется отрезок, соединяющий центры его оснований; боковой поверхностью – часть конической поверхности, расположенная между основаниями усечённого конуса. Отрезки образующих конической поверхности, расположенные между основаниями усечённого конуса называются его образующими .



Усечённый конус может быть получен путём вращения прямоугольной трапеции вокруг её боковой стороны, перпендикулярной к основаниям.

Теорема (о площади боковой поверхности усечённого конуса ). Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на длину образующей: , где R и r – радиусы оснований, l – длина образующей.

Теорема (об объёме усечённого конуса ). Объём усечённого конуса, высота которого равна H , а радиусы оснований равны R и r , вычисляется по формуле
.

Сфера и шар

Теорема (о взаимном расположении сферы и плоскости ). Пусть d – расстояние от центра O сферы радиуса r до плоскости α. Тогда:

1) если d < r , то сечение сферы плоскостью α есть окружность с центром O 1 радиуса , где O 1 – проекция точки O на плоскость α;

2) если d = r , то сфера и плоскость имеют только одну общую точку;

3) если d > r , то сфера и плоскость не имеют общих точек.

1) Пусть d < r , плоскость a пересекает сферу W(O , r ) по какой-то лини L. Пусть точка M – произвольная точка линии L , тогда в треугольнике OO 1 M :

ÐOO 1 M =90° (OO 1 ^MO 1 , т.к. OO 1 ^a и MO 1 Ìa), катет MO 1 = . Значит, все точки линии L равноудалены от точки O 1 , следовательно, сечение сферы плоскостью a есть окружность с центром в точке O 1 и радиусом .

2) Пусть d = r . Расстояние от точки O до плоскости a меньше расстояния от точки O O 1 , значит, точка O 1 – единственная точка плоскости a, принадлежащая сфере.

3) Пусть d > r . Расстояние от точки O до любой точки плоскости a, отличной от точки O 1 , больше d . А d > r , значит, сфера и плоскость не имеют общих точек.Š

Следствие. Сечение шара плоскостью есть круг.

Плоскость, проходящая через центр сферы (шара), называется диаметральной плоскостью , а сечение этой плоскостью – большой окружностью (большим кругом ). Концы диаметра, перпендикулярного диаметральной плоскости, называются полюсами сферы .

Касательной плоскостью к сфере (шару) называется плоскость, имеющая со сферой (шаром) только одну общую точку. Она называется точкой касания . Прямая, лежащая в касательной плоскости сферы (шара) и проходящая через точку касания, называется касательной прямой к сфере (шару).

Теорема (признак касательной плоскости)

Теорема (о свойстве касательной плоскости)

Сферическим (шаровым) сегментом называется часть сферы (шара), отсекаемая плоскостью. Окружность (круг), по которой плоскость пересекает сферу (шар), называется основанием сферических (шаровых) сегментов , на которые плоскость разбивает сферу. Высотой сферического (шарового) сегмента называется длина отрезка диаметра, перпендикулярного основанию сегмента, расположенного между этим основанием и сферой. (На рисунке AF и BF – высоты соответствующих сферических (шаровых) сегментов).

Сферическим поясом (шаровым слоем ) называется часть сферы (шара), расположенная между двумя параллельными секущими плоскостями. Основаниями сферического пояса (шарового слоя) называются окружности (круги), которые получаются в сечении сферы (шара) этими плоскостями. Высотой сферического пояса (шарового слоя) называется расстояние между плоскостями. (На рисунке FE – высота сферического пояса (шарового слоя).)

Шаровым сектором называется геометрическое тело, полученное вращением кругового сектора с углом, меньшим 90°, вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов. Шаровой сектор состоит из шарового сегмента и конуса. Высотой шарового сектора называется высота соответствующего ему шарового сегмента. (На рисунке AB – высота шарового сектора).

Площадь сферического сегмента , где R – радиус сферы, h – высота сегмента.

Площадь сферического пояса , где R – радиус сферы, h – высота пояса.

Площадь сферы , где R – радиус сферы.

Объём шарового сектора , где R – радиус шара, h – высота сектора.

Объём шарового сегмента
, где R – радиус шара, h – высота сегмента.

Объём шара , где R – радиус шара.

Конспект урока по теме:

«Конус. Сечение конуса плоскостями».

Разработала:

преподаватель математики ГБПОУ КТТ

Сарычева С.В.

Цели и задачи урока :

    Образовательные: познакомить учащихся с понятием конической поверхности и конуса; рассмотреть основные элементы конуса; привить навыки построения конуса; рассмотреть различные виды сечений конуса; осуществить связь между новым материалом и изучением цилиндра. Прививать умение реализовывать полученные знания при решении задач различного уровня сложности, в том числе тестовых заданий.

    Развивающие: способствовать развитию пространственного воображения; проводить аналогию с ранее изученным материалом; развивать логическое мышление учащихся, сообразительность, расширять их кругозор.

    Воспитывающие: продолжать воспитывать у учащихся уважительное отношение друг к другу; воспитывать культуру речи, аккуратность.

Тип урока : урок изучения нового материала.

Методы обучения : информационно-иллюстративный, элементы информационных технологий, проблемный метод «неоконченных решений», элементы лекции.

Формы работы учащихся : индивидуальная и групповая.

Оборудование для урока : мультимедийный проектор, экран, ноутбук, презентация к уроку, модели тел вращения, учебник, штатив, проволока.

Прогнозируемый результат : уметь оперировать понятиями ось конуса, образующая, радиус, диаметр, высота, боковая поверхность, сечения; уметь распознавать их на рисунках, уметь приводить примеры предметов имеющих форму конуса, уметь решать задачи с использованием данных понятий.

План урока :

    Организационный момент.

    Проверка домашнего задания.

    Актуализация знаний.

    Изучение конуса.

    Программируемый опрос.

    Решение задач.

    Домашнее задание.

    Подведение итогов урока.

Ход урока.

    Организационный момент.

Проверить подготовку группы к работе, отметить отсутствующих. Настроить учащихся на работу.

Арабский математик Х века утверждал: «Знание – самое превосходное из владений. Все стремятся к нему, само же оно не приходит». (Абу-р-Райхан ал - Бируни) (Слайд 1)

    Проверка домашнего задания.

Для проверки теоретической части домашнего задания проводится фронтальный опрос. Учащимся предлагается ответить на вопросы альтернативного теста (ответы только «да» и «нет»).

    Может ли осевое сечение цилиндра быть: квадратом, трапецией, прямоугольником, кругом?

    Верно ли, что у прямого цилиндра образующая равна высоте?

    Верно ли, что любое сечение цилиндра плоскостью, перпендикулярной оси, есть окружность, равная окружности основания?

    Верно ли, что если радиус равен 12 см, то диаметр равен 240?

Во время фронтального опроса на доске воспроизводится решение домашних задач, если возникли вопросы по решению.

    Актуализация знаний.

Вспомните, пожалуйста, как мы изучали цилиндр. С чего мы начинали изучение? С того, что попытались найти вокруг нас тела, имеющие цилиндрическую форму. Потом мы рассмотрели понятие цилиндра, его основные элементы, сечения.

Аналогичным образом сегодня мы будем знакомиться с конусом. Осмотритесь вокруг и назовите тела, которые имеют коническую форму. (Слайд 2-8)

Итак, тема урока «Конус. Сечение конуса плоскостями». (Слайд9-10) (Учащиеся записывают тему в тетрадь.)

    Изложение нового материала.

Историческая справка. (Слайд 11)

Конус в переводе с греческого « konos » означает «сосновая шишка». С конусом люди знакомы с глубокой древности. Вопросами изучения конуса занимались Архимед, Демокрит, Платон, Сократ. Апполоний Пергский написал большой трактат о конических сечениях (260-170 гг. до н.э.). Он был учеником Евклида (III в. до н. э.). Евклид создал великий труд из 15 книг под названием «Начала». Эти книги издаются и в настоящее время, а в школах Англии по ним учатся до сих пор.

Конической поверхностью называется поверхность, образованная движением прямой, перемещающейся в пространстве так, что она при этом постоянно проходит через неподвижную точку А и пересекает данную линию MN . (Слайд 12)

Конусом называется тело, ограниченное частью поверхности, расположенной по одну сторону от неподвижной точки, и плоскостью, пересекающей все прямые по ту же сторону от точки. (Слайд 13)

Мы будем изучать конус, у которого плоскость, пересекающая прямые имеет вид круга. Дадим ему определение: конусом (круговым) называется тело, которое состоит из круга – основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания, - образующие. (Слайд 14)

Конус может быть получен вращением прямоугольного треугольника вокруг одного из катетов. (Слайд 15) (В тетради выполняется рисунок.)

Для расширения и углубления знаний учащихся по теме проводится эксперимент. Учащимся предлагается штатив и проволока, из которой необходимо выгнуть прямоугольный треугольник. Закрепив его на штативе, они вращают его вокруг одного из катетов. При этом получают наглядное представление о конусе. (Слайд 16)

Конус называется прямым, если высота перпендикулярна плоскости основания. (Слайд 17)

Рассмотрим основные элементы конуса. (Слайд 14)

(Учащиеся выполняют рисунок в тетради и делают необходимые записи.)

Познакомимся с сечениями конуса плоскостями.

    Сечением конуса параллельным плоскости основания является круг.

Радиус сечения вычисляется по формуле , где – высота малого конуса, а высота большого конуса. (Слайд 17)

    Осевое сечение конуса проходит через ось симметрии и диаметр основания.

Оно имеет вид равнобедренного треугольника, у которого равные стороны являются образующими, а основание – диаметром круга. . Высота, образующая и радиус составляют прямоугольный треугольник и связаны теоремой Пифагора : . (Слайд 18)

5. Программируемый опрос.

Цель опроса – проверить усвоение разобранной темы. Задание высвечивается на экране с помощью проектора. Учащиеся имеют два листочка, на которых под копирку пишут ответы на вопросы. Один листок сдается учителю, второй остается у них, чтобы выполнить самопроверку.

По рисунку укажите (слайд 20-21)

    Радиусы основания конуса.

    Высоту конуса.

    Образующие конуса.

    Осевое сечение

6. Решение задач.

1. Для участия в маскараде необходимо изготовить колпак высотой 40 см. Какой длины должна быть боковая сторона колпака и его радиус, если размер головы 36 см? (Слайд 22)

2. Какой высоты должна быть палатка, если диаметр основания равен 5 м, а растяжки, удерживающие палатку равны 8 м? (Слайд 23)

7. Домашнее задание.

П. 184 – 185 стр.322-324, № 9 и № 10 на стр. 335. (Слайд 24)

8. Подведение итогов урока.

Для подведения итогов урока вернемся к слайду с прогнозируемыми результатами. Скажите, достигли ли мы поставленных целей. Для опроса можно поднять 2-3 учащихся.

Приложение:


Слайд 1 Слайд 2


Слайд 19 Слайд 20


Слайд 21 Слайд 22


Слайд 23 Слайд 24

Понравилась статья? Поделитесь ей
Наверх