Сделать пирамиду из бумаги. Как сделать пирамиду из картона? Развертка правильной пирамиды для склеивания

Большой выбор развёрток простых геометрических фигур.

Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Не у многих получается склеить кубик с первого раза, иногда требуется несколько дней, чтобы сделать поистине ровный и безупречный куб. Более сложные фигуры цилиндр и конус требуют в несколько раз больше усилий нежели простой кубик. Если вы не умеете аккуратно клеить геометрические фигуры, значит и за сложные модели вам ещё рано браться. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам.

Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького. Более сложной фигурой является маленький кубик потому, как клеить его сложнее, чем большой.

Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. Перед тем, как печатать и клеить геометрические фигуры обязательно ознакомьтесь со статьёй о том, как выбрать бумагу и как вообще правильно вырезать, сгибать и клеить бумагу.

Для более качественной печати советую использовать программу AutoCAD, и даю вам развёртки для этой программы , а также читайте, как распечатывать из автокада . Вырежьте развёртки кубиков с первого листа, по линиям сгиба обязательно проведите иголкой циркуля под железную линейку, чтобы бумага хорошо сгибалась. Теперь можно начинать клеить кубики.

Для экономии бумаги и на всякий пожарный я сделал несколько развёрток маленького кубика, мало ли вам захочется склеить не один кубик или что-то не получится с первого раза. Ещё одна несложная фигура это пирамида, её развёртки найдёте на втором листе. Подобные пирамиды стоили древние египтяне, правда не из бумаги и не таких маленьких размеров:)

А это тоже пирамида, только в отличие от предыдущей у неё не четыре, а три грани.

Развёртки трёхгранной пирамиды на первом листе для печати.

И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

Более сложная фигура это пятигранник, хотя пятигранник сложнее начертить, нежели склеить.

Развёртки пятигранника на втором листе.

Вот мы и добрались до сложных фигур. Теперь придётся поднапрячься, склеить такие фигуры нелегко! Для начала обычный цилиндр, его развёртки на втором листе.

А это более сложная фигура по сравнению с цилиндром, т.к. в её основании не круг, а овал.

Развёртки этой фигуры на втором листе, для овального основания сделано две запасных детали.

Чтобы аккуратно собрать цилиндр его детали нужно клеить встык. С одной стороны дно можно приклеить без проблем, просто поставьте на стол заранее склеенную трубку, положите на дно кружок и залейте клеем изнутри. Следите, чтобы диаметр трубы и круглого дна плотно подходили друг к другу, без щелей, иначе клей протечёт и всё приклеится к столу. Второй кружок приклеить будет сложнее, поэтому приклейте внутри вспомогательные прямоугольники на расстоянии толщины бумаги от края трубы. Эти прямоугольники не дадут упасть основанию внутрь, теперь вы без проблем приклеете кружок сверху.

Цилиндр с овальным основанием можно клеить также как и обычный цилиндр, но он имеет меньшую высоту, поэтому тут проще вставить внутрь гармошку из бумаги, а наверх положить второе основание и по краю приклеить клеем.

Теперь очень сложная фигура - конус. Его детали на третьем листе, запасной кружок для днища на 4-ом листе. Вся сложность склеивания конуса в его острой вершине, а потом ещё будет очень сложно приклеить дно.

Сложная и одновременно простая фигура это шар. Шар состоит из 12-ти пятигранников, развёртки шара на 4-ом листе. Сначала клеится две половинки шара, а потом обе склеиваются вместе.

Довольно интересная фигура - ромб, её детали на третьем листе.

А теперь две очень похожие, но совершенно разные фигуры, их отличие только в основании.

Когда склеите эти обе фигуры, то не сразу поймёте, что это вообще такое, они получились какие-то совсем невосприимчивые.

Ещё одна интересная фигурка это тор, только он у нас очень упрощён, его детали на 5-ом листе.

И наконец, последняя фигура из равносторонних треугольников, даже не знаю, как это назвать, но фигура похожа на звезду. Развёртки этой фигуры на пятом листе.

На сегодня это всё! Я желаю вам успехов в этой нелёгкой работе!

Пирамиды бывают: треугольные, четырехугольные и т. д., смотря по тому, что является основанием - треугольник, четырехугольник и т. д.
Пирамида называется правильной (фиг.286,б), если, во - первых, ее основанием является правильный многоугольник, и, во - вторых, высота проходит через центр этого многоугольника.
В противном случае пирамида называется неправильной (фиг.286,в). В правильной пирамиде все боковые ребра равны между собой (как наклонные с равными проекциями). Поэтому все боковые грани правильной пирамиды есть равные равнобедренные треугольники.
Анализ элементов правильной шестиугольной пирамиды и их изображение на комплексном чертеже (фиг.287) .

а) Комплексный чертеж правильной шестиугольной пирамиды. Основание пирамиды расположено на плоскости П 1 ; две стороны основания пирамиды параллельны плоскости проекций П 2 .
б) Основание ABCDEF - шестиугольник, расположенный в плоскости проекций П 1 .
в) Боковая грань ASF - треугольник, расположенный в плоскости общего положения.
г) Боковая грань FSE - треугольник, расположенный в профильно - проектирующей плоскости.
д) Ребро SE - отрезок общего положения.
е) Ребро SA - фронтальный отрезок.
ж) Вершина S пирамиды - точка в пространстве.
На (фиг.288 и фиг.289) приведены примеры последовательных графических операций при выполнении комплексного чертежа и наглядных изображений (аксонометрии) пирамид.

Дано:
1. Основание расположено на плоскости П 1 .
2. Одна из сторон основания параллельна оси х 12 .
I. Комплексный чертеж.
I, а. Проектируем основание пирамиды - многоугольник, по данному условию лежащий в плоскости П 1 .
Проектируем вершину - точку, расположенную в пространстве. Высота точки S равна высоте пирамиды. Горизонтальная проекция S 1 точки S будет в центре проекции основания пирамиды (по условию).
I, б. Проектируем ребра пирамиды - отрезки; для этого соединяем прямыми проекции вершин основания ABCDE с соответствующими проекциями вершины пирамиды S . Фронтальные проекции S 2 С 2 и S 2 D 2 ребер пирамиды изображаем штриховыми линиями, как невидимые, закрытые гранями пирамиды (SBА и SAE ).
I, в. Дана горизонтальная проекция К 1 точки К на боковой грани SBА , требуется найти ее фронтальную проекцию. Для этого проводим через точки S 1 и K 1 вспомогательную прямую S 1 F 1 , находим ее фронтальную проекцию и на ней при помощи вертикальной линии связи определяем место искомой фронтальной проекции K 2 точки К .
II. Развертка поверхности пирамиды - плоская фигура, состоящая из боковых граней - одинаковых равнобедренных треугольников одна сторона которых равна стороне основания, а две другие - боковым ребрам, и из правильного многоугольника - основания.
Натуральные размеры сторон основания выявлены на его горизонтальной проекции. Натуральные размеры ребер на проекциях не выявлены.
Гипотенуза S 2 ¯A 2 (фиг.288, 1 , б) прямоугольного треугольника S 2 O 2 ¯A 2 , у которого большой катет равен высоте S 2 O 2 пирамиды, а малый - горизонтальной проекции ребра S 1 A 1 является натуральной величиной ребра пирамиды. Построение развертки следует выполнять в следующем порядке:
а) из произвольной точки S (вершины) проводим дугу радиусом R , равным ребру пирамиды;
б) на проведенной дуге отложим пять хорд размером R 1 равным стороне основания;
в) соединим прямыми точки D, С, В, А, Е, D последовательно между собой и с точкой S , получим пять равнобедренных равных треугольников, составляющих развертку боковой поверхности данной пирамиды, разрезанной по ребру SD ;
г) пристраиваем к любой грани основание пирамиды - пятиугольник, пользуясь способом триангуляции, например к грани DSE .
Перенос на развертку точки К осуществляется вспомогательной прямой с помощью размера В 1 F 1 , взятого на горизонтальной проекции, и размера А 2 К 2 , взятого на натуральной величине ребра.
III. Наглядное изображение пирамиды в изометрии.
III, а. Изображаем основание пирамиды, пользуясь координатами согласно (фиг.288, 1 , а).
Изображаем вершину пирамиды, пользуясь координатами по (фиг.288, 1 , а).
III, б. Изображаем боковые ребра пирамиды, соединяя вершину с вершинами основания. Ребро S"D" и стороны основания C"D" и D"E" изображаем штриховыми линиями, как невидимые, закрытые гранями пирамиды C"S"B" , B"S"A" и A"S"E" .
III, e. Определяем на поверхности пирамиды точку К , пользуясь размерами у F и х K . Для ди-метрического изображения пирамиды следует придерживаться той же последовательности.
Изображение неправильной треугольной пирамиды.

Дано:
1. Основание расположено на плоскости П 1 .
2. Сторона ВС основания перпендикулярна оси X .
I. Комплексный чертеж
I, а. Проектируем основание пирамиды - равнобедренный треугольник, лежащий в плоскости П 1 , и вершину S - точку, расположенную в пространстве, высота которой равна высоте пирамиды.
I, б. Проектируем ребра пирамиды - отрезки, для чего соединяем прямыми одноименные проекции вершин основания с одноименными проекциями вершины пирамиды. Горизонтальную проекцию стороны основания ВС изображаем штриховой линией, как невидимую, закрытую двумя гранями пирамиды ABS , ACS .
I, в. На фронтальной проекции A 2 С 2 S 2 боковой грани дана проекция D 2 точки D . Требуется найти ее горизонтальную проекцию. Для этого через точку D 2 проводим вспомогательную прямую параллельно оси х 12 - фронтальную проекцию горизонтали, затем находим ее горизонтальную проекцию и на ней, при помощи вертикальной линии связи, определяем место искомой горизонтальной проекции D 1 точки D .
II. Построение развертки пирамиды.
Натуральные размеры сторон основания выявлены на горизонтальной проекции. Натуральная величина ребра AS выявлена на фронтальной проекции; натуральной величины ребер BS и CS в проекциях нет, величину этих ребер выявляем путем вращения их вокруг оси i , перпендикулярной к плоскости П 1 проходящей через вершину пирамиды S . Новая фронтальная проекция ¯C 2 S 2 является натуральной величиной ребра CS .
Последовательность построения развертки поверхности пирамиды:
а) вычерчиваем равнобедренный треугольник - грань CSB , основание которого равно стороне основания пирамиды СВ , а боковые стороны - натуральной величине ребра SC ;
б) к сторонам SC и SB построенного треугольника пристраиваем два треугольника - грани пирамиды CSA и BSA , а к основанию СВ построенного треугольника - основание СВА пирамиды, в результате получаем полную развертку поверхности данной пирамиды.
Перенос на развертку точки D выполняется в следующем порядке: сначала на развертке боковой грани ASC проводим линию горизонтали при помощи размера R 1 а затем определяем на линии горизонтали место точки D при помощи размера R 2 .
III. Наглядное изображение пирамиды е фронтальной диметрической проекции
III, а. Изображаем основание А"В"С и вершину S" пирамиды, пользуясь координатами согласно (

Пирамида является символьным предметом. Издревле считалось, что она способна гармонизировать окружающий мир человека, которому она подарена, а также представляет собой наиболее правильную форму бытия. Недаром египетские пирамиды сохранились до сих пор в неизменном виде.

Картонные пирамиды: как склеить пирамиду из картона?

Пирамида из картона своими руками может быть создана по следующей схеме:

  1. На белом листе бумаги рисуем квадрат и четыре треугольника.
  2. Например, высота треугольника может составить 26,5 см, а ширина, как и грань квадрата 14,5 см.
  3. Берем ножницы и вырезаем все части пирамиды, оставляя при этом небольшой отступ для нахлеста.
  4. Складываем все детали вместе и промазываем клеем. Даем высохнуть.
  5. После того, как пирамида высохла, можно взять акриловые краски или цветные карандаши и раскрасить получившуюся пирамидку.

Пирамида в пропорциях «золотого сечения»

Можно попробовать создать пирамиду, основываясь на математических знаниях:

  1. Величина пирамиды в соответствии с «золотым сечением» составляет 7, 23 см. Из геометрии мы помним, что коэффициент золотого сечения составляет 1,618.
  2. Умножаем коэффициент на имеющуюся величину 723 мм, получаем 117 мм. Такой должна быть длина основания у самой пирамиды. Высота при этом составляет 72 мм.
  3. В соответствии с теоремой Пифагора считаем размер граней треугольников пирамиды. В результате пирамида должна иметь длину 117 мм.
  4. Если умножить 117 на 117, то можно получить квадрат основания, который нужен для того, чтобы пирамида не была пустой.
  5. Чертим на картоне все детали, вырезаем.
  6. Соединяем грани треугольников.
  7. При присоединении последнего треугольника необходимо предварительно поднять конструкцию в вертикальной плоскости, после чего приклеить оставшийся треугольник.
  8. Углы пирамиды должны быть проклеены ровно и аккуратно, так как это обеспечит ее устойчивость.

Если у пирамиды запланировано наличие дна, то оно приклеиваются в самом конце после того, как все грани треугольников соединены между собой и высохли.

Можно попробовать сделать большую пирамиду, используя для ее создания коробку от холодильника.

Как сделать пирамиду из картона для подарка?

Мы уже предлагали некоторые варианты , теперь предлагаем вам сделать и в виде пирамиды. Для того чтобы сделать пирамиду в домашних условиях, необходимо подготовить следующие материалы:

  • ножницы;
  • степлер;
  • 4 квадрата картона небольшого размера;
  • скотч;
  • тонкая ленточка;
  • простой карандаш.
  1. Берем 4 квадратных картона, один откладываем сразу в сторону, на остальных квадратах рисуем простым карандашом треугольники, затем вырезаем их.
  2. Необходимо вырезать четыре треугольника.
  3. Прикладываем к каждой стороне квадрата по одному треугольнику самой короткой частью.
  4. Приклеиваем скотчем треугольник к основанию квадрата.
  5. Берем в руки три треугольника, и склеиваем их стороны между собой таким образом, чтобы внутри получился «домик». При этом один из треугольников не приклеиваем. Его необходимо специально оставить открытым, чтобы можно было что-либо положить внутрь пирамиды.

Более просто легко сделать пирамиду маленького размера, если предварительно распечатать на бумаге развертку пирамиды.

Затем с помощью линейки необходимо согнуть пирамиду по краям. Линейка позволит сохранить грани ровными.

Другой вариант создания пирамиды представлен на следующем рисунке: распечатав шаблон, нужно согнуть по линиям пирамиду, намазав затем клеем поверхность склейки. Создание такой пирамиды займет буквально пару минут.

Если расположить пирамиду в комнате в определенной зоне, то она способна оказывать положительное воздействие на жизнь человека, проживающего в комнате. Так, например, если пирамиду расположить в восточной части комнаты, то это поможет улучшить здоровье, на юге и юго-востоке – обрести финансовое благополучие, на западе – служит оберегом для детей, на юго-западе – улучшит .

Сначала строят развертку неусеченной пирамиды, все грани которой, имеющие форму треугольника, одинаковы. На плоскости намечают точку S 1 (вершину пирамиды) и из нее, как из центра, проводят дугу окружности радиусомR , равным действительной длине бокового ребра пирамиды. Действительнуюдлину ребра можно определить по профильной проекции пирамиды, например отрезки s " e " или s " b " , так как эти ребра параллельны плоскостиW и изображаются на ней действительной длиной. Далее по дуге окружности от любой точки, напримера 1 откладывают шесть одинаковых отрезков, равных действительной длине стороны шестиугольника - основания пирамиды. Действительную длину стороны основания пирамиды получаем на горизонтальной проекции(отрезок ab ). Точки a 1 - f 1 соединяют прямыми с вершиной s 1 . Затем от вершины а 1 на этих прямых откладывают действительные длины отрезков ребер до секущей плоскости.

На профильной проекции усеченной пирамиды имеются действительные длины только двух отрезков - s "5" иs "2". Действительные длины остальных отрезков определяют способом вращения их вокруг оси, перпендикулярной к плоскости Н и проходящей через вершинуs . Например, повернув отрезокs "6" околооси до положения, параллельного плоскости W , получим на этой плоскости его действительную длину. Для этого достаточно через точку6" провести горизонтальную прямую до пересечения с действительной длиной ребраSE (илиSB ). Отрезокs // 6 0 // представляет собой действительную длину отрезка S 6 .

Полученные точки l 1 , 2 1 , 3 1 и т. д. соединяют прямыми и пристраивают фигуры основания и сечения, пользуясь методом триангуляции. Линии сгиба на развертке проводят штрихпунктирной линией с двумя точками.

Развёртка усеченного конуса

Построение развертки поверхности конуса начинают с проведения дуги окружности радиусом, равным длине образующей конуса из точки s 0 . Длина дуги определяется углом α:

α=
,

где d - диаметр окружности основания конуса в мм;

l - длина образующей конуса в мм.

Дугу делят на 12 частей и полученные точки соединяют с вершиной s о . От вершины s 0 откладывают действительные длины отрезков образующих от вершины конуса до секущей плоскостиР.

Действительные длины этих отрезков находят, как и в примере с пирамидой, способом вращения около вертикальной оси, проходящей через вершину конуса.Так, например, чтобы получить действительную длину отрезка S 2, надо из 2" провести горизонтальную прямую до пересечения в точкеb / с контурной образу-ющей конуса, являющейся действительной ее длиной.

К развертке конической поверхности пристраивают фигуры сечения и основания конуса.

Вопросы для самопроверки

    Как построить развертку призмы?

    Как построить развертку пирамиды?

    Как построить развертку цилиндра?

    Как построить развертку конуса?

Тема: аксонометрические Проекции

Аксонометрические проекции представляют собой наглядное изображение предмета на плоскости, при котором изображаются все три измерения.

Аксонометрическое проецирование - это параллельное проецирование предмета вместе с координатной системой на некоторую плоскость.

Если проецирующий луч перпендикулярен плоскости проекций - аксонометрия прямоугольная.

Если не перпендикулярен – косоугольная.

Отношение длины аксонометрической проекции отрезка, // аксонометрической оси, к его истинной длине – коэффициент искажения.

k– коэффициент искажения по оси ОХ

m– коэффициент искажения по оси ОУ

n– коэффициент искажения по оси ОZ

Если k=m=n- аксонометрия называется изометрией

Если равны только два коэффициента (k=m≠n) – диметрия

Развертка поверхности пирамиды - это плоская фигура, составленная из основания и граней пирамиды, совмещенных с некоторой плоскостью. На примере ниже мы рассмотрим построение развертки способом треугольников.

Пирамиду SABC пересекает фронтально-проецирующая плоскость α. Необходимо построить развертку поверхности SABC и нанести на нее линию пересечения.

На фронтальной проекции S""A""B""C"" отмечаем точки D"", E"" и F"", в которых след α v пересекается с отрезками A""S"", B""S"" и C""S"" соответственно. Определяем положение точек D", E", F" и соединяем их друг с другом. Линия пересечения обозначена на рисунке красным цветом.

Определение длины ребер

Чтобы найти натуральные величины боковых ребер пирамиды, воспользуемся методом вращения вокруг проецирующей прямой. Для этого через вершину S перпендикулярно горизонтальной плоскости H проведем ось i. Поворачивая вокруг нее отрезки SA, SB и SC, переместим их в положение, параллельное фронтальной плоскости V.

Действительные величины ребер равны проекциям S""A"" 1 , S"" 1 B"" 1 и S""C"" 1 . Отмечаем на них точки D"" 1 , E"" 1 , F"" 1 , как это показано стрелками на рисунке выше.

Треугольник ABC, лежащий в основании пирамиды, параллелен горизонтальной плоскости. Он отображается на ней в натуральную величину, равную ∆A"B"C".

Порядок построения развертки

В произвольном месте на чертеже отмечаем точку S 0 . Через нее проводим прямую n и откладываем отрезок S 0 A 0 = S""A"" 1 .

Строим грань ABS = A 0 B 0 S 0 как треугольник по трем сторонам. Для этого из точек S 0 и A 0 проводим дуги окружностей радиусами R 1 = S""B"" 1 и r 1 = A"B" соответственно. Пересечение данных дуг определяет положение точки B 0 .

Грани B 0 S 0 C 0 и C 0 S 0 A 0 строятся аналогично. Основание пирамиды в зависимости компоновки чертежа присоединяется к любой из сторон: A 0 B 0 , B 0 C 0 или C 0 A 0 .

Нанесем на развертку линию, по которой плоскость α пересекается с пирамидой. Для этого на ребрах S 0 A 0 , S 0 B 0 и S 0 С 0 отметим соответственно точки D 0 , E 0 и F 0 . При этом точка D 0 находится на пересечении отрезка S 0 A 0 с окружностью радиусом S""D"" 1 . Аналогично E 0 = S 0 B 0 ∩ S""E"" 1 , F 0 = S 0 C 0 ∩ S""F"" 1 .

Понравилась статья? Поделитесь ей
Наверх