С какой целью был расшифрован геном человека. Геном человека: как это было и как это будет. Геном человека: общие понятия

26 июня 2000 года на совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп – International Human Genome Sequencing Consortium (IHGSC) и «Celera Genomics» – объявили о том, что работы по расшифровке генома человека успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества – постгеномная эра.
Что может дать нам расшифровка генома и стоят ли потраченные средства и усилия достигнутого результата? Фрэнсис Коллинз (Francis S. Collins), руководитель американской программы «Геном человека», в 2000-м году дал следующий прогноз развития медицины и биологии в постгеномную эру:

2010 год – генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах;

2020 год – на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде;

2030 год – определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах;

2040 год – Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга. Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию. Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Как видно из прогноза, геномная информация в недалеком будущем может стать основой лечения и профилактики множества болезней. Без информации о своих генах (а она умещается на стандарный DVD-диск) человек в будущем сможет вылечить разве что насморк у какого-нибудь целителя в джунглях.

Это кажется фантастикой? Но когда-то такой же фантастикой была поголовная вакцинация от оспы или интернет (заметьте, в 70-х его еще не существовало)! В будущем генетический код ребенка будут выдавать родителям в роддоме. Теоретически, при наличии такого диска, лечение и предотвращение любых недугов отдельно взятого человека станет сущим пустяком.

Профессиональный врач сможет в предельно сжатые сроки поставить диагноз, назначить эффективное лечение, и даже определить вероятность появления разных болезней в будущем. К примеру, современные генетические тесты уже позволяют точно определить степень предрасположенности женщины к раку груди. Почти наверняка, лет через 40–50 ни один уважающий себя врач без генетического кода не захочет «лечить вслепую» – подобно тому, как сегодня хирургия не может обойтись без рентгеновского снимка.

Давайте зададимся вопросом – а достоверно ли сказанное, или, может быть, в действительности всё будет наоборот? Смогут ли люди наконец победить все болезни и придут ли они ко всеобщему счастью?

Увы. Начнем с того, что Земля маленькая, и счастья на всех не хватит. По правде сказать, его не хватит даже для половины населения развивающихся стран. «Счастье» предназначено в основном для государств, развитых в плане науки, в частности – наук биологических. Например методика, с помощью которой можно «прочесть» генетический код любого человека, уже давно запатентована. Это отлично отработанная автоматизированная технология – правда, дорогостоящая и очень тонкая. Хочешь, покупай лицензию, а хочешь – придумывай новую методику. Только вот денег на подобную разработку хватит далеко не у всех стран!

В итоге ряд государств будет обладать медициной, существенно опережающей уровень остального мира. Естественно, в слаборазвитых странах Красным Крестом будут строиться благотворительные больницы, госпитали и геномные центры. И постепенно это приведет к тому, что генетическая информация пациентов развивающихся стран (которых большинство), сосредоточится у двух-трех держав, финансирующих эту благотворительность. Что можно сделать, имея такую информацию – даже представить трудно. Может, и ничего страшного. Однако возможен и другой исход. Битва за приоритет, сопровождавшая секвенирование генома, наглядно подтверждает важность доступности генетической информации. Давайте кратко вспомним некоторые факты из истории программы «Геном человека».

Противники расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Главный аргумент против был: «проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. А если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат...» Однако Джеймс Уотсон, один из первооткрывателей структуры ДНК и идеолог программы тотального прочтения генетической информации, остроумно парировал: «лучше не поймать большую рыбу, чем не поймать маленькую». Аргумент смелого учёного был услышан – проблему генома вынесли на обсуждение в конгресс США, и в итоге была принята национальная программа «Геном человека».

В американском городе Бетесда, что недалеко от Вашингтона, находится один из координационных центров HUGO (HUman Genome Organization). Центр координирует научную работу по теме «Геном человека» в шести странах – Германии, Англии, Франции, Японии, Китае и США. В работу включились учёные из многих стран мира, объединенные в три команды: две межгосударственные – американская «Human Genome Project» и британская из «Wellcome Trust Sanger Institute» – и частная корпорация из штата Мериленд, включившаяся в игру чуть позже, – «Celera Genomics». Это, пожалуй, первый случай в биологии, когда на таком высоком уровне частная фирма соревновалась с межгосударственными организациями.

Борьба происходила с использованием колоссальных средств и возможностей. Как отмечали некоторое время назад российские эксперты, Celera стояла на плечах у программы «Геном Человека», то есть использовала то, что уже было сделано в рамках глобального проекта. Действительно, «Celera Genomics» подключилась к программе не сначала, а когда проект уже шёл полным ходом. Однако специалисты из Celera усовершенствовали алгоритм секвенирования. Кроме того, по их заказу был построен суперкомпьютер, который позволял складывать выявляемые «кирпичики» ДНК в результирующую последовательность быстрее и точнее. Конечно, все это не давало компании Celera безоговорочного преимущества, однако считаться с ней как с полноправным участником гонки заставило.

Появление «Celera Genomics» резко повысило напряженность – те, кто был занят в государственных программах, почувствовали жёсткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Во главе Celera стал профессор Крейг Вентер (Craig Venter), который имел огромный опыт научной работы по государственной программе «Геном человека». Именно он и заявил, что все публичные программы малоэффективны и что в его фирме геном секвенируют быстрее и дешевле. А тут появился ещё один фактор – спохватились крупные фармацевтические компании.

Дело в том, что если вся информация о геноме окажется в открытом доступе, они лишатся интеллектуальной собственности, и нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в «Celera Genomics» (с которой, вероятно, было проще договориться). Это еще более укрепило её позиции. В ответ на это коллективам межгосударственного консорциума срочно пришлось повышать эффективность работ по расшифровке генома. Сначала работа шла несогласованно, но потом были достигнуты определенные формы сосуществования – и гонка начала наращивать темп.

Финал был красивым – конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека. Произошло это, как мы уже писали – 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

«Гонка за геномом», в которой участвовали межгосударственная и частная компании, формально завершилась «ничьей»: обе группы исследователей опубликовали свои достижения практически одновременно. Руководитель частной компании «Celera Genomics» Крейг Вентер опубликовал свою работу в журнале Science в соавторстве с приблизительно 270 учёными, работавшими под его началом. Работа, выполненная международным консорциумом по секвенированию человеческого генома (IHGSC), опубликована в журнале Nature, и полный список авторов насчитывает около 2800 человек, работавших в почти трёх десятках центров по всему миру.

Исследования в сумме продлились 15 лет. Создание первого «чернового» варианта генома человека обошлось в 300 миллионов долларов. Однако на все исследования по этой теме, включая сравнительные анализы и решение ряда этических проблем, было выделено в сумме около трех миллиардов долларов. «Celera Genomics» вложила примерно столько же, правда, она истратила их всего за шесть лет. Цена колоссальная, но эта сумма ничтожна в сравнении с той выгодой, которую получит страна-разработчик от ожидаемой вскоре окончательной победы над десятками серьезных заболеваний. А уже в 2007 году одному из первооткрывателей структуры ДНК – доктору Джеймсу Уотсону – были подарены два DVD-диска с его геномом общей стоимостью 1 млн. долларов – как видим, цены падают.

В октябре 2002 года в интервью «БиБиСи» президент «Celera Genomics» Крейг Вентер заявил, что одна из его некоммерческих организаций планирует примерно через 10 лет заняться изготовлением компакт-дисков, содержащих максимум информации о ДНК клиента. Предполагаемая стоимость такого заказа – более 700 тысяч долларов. Разработчики программы «Революционные методы секвенирования генома», финансируемой Национальными институтами здравоохранения США, ориентирутся на снижение стоимости секвенирования генома человека до 100 тыс. долларов к 2009 г. и до 1 тысячи – к 2014.

Широкая известность и масштабное финансирование – палка о двух концах, поскольку за счет неограниченных средств работа продвигается легко и быстро. Но взамен результат исследований часто должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты – между 20 и 25 тыс. генов в геноме каждой человеческой клетки.

Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы «Human Genome Studies») настаивал, что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа – The Institute for Genomic Research, Rockville, Maryland, USA – заявила о 120 тыс. идентифицированных генов и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала «Human Genome Studies») будет значительно бoльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Очевидно, что наспех «приватизированная» генетическая информация будет в ближайшие годы тщательно проверяться, пока точное число генов станет, наконец, общепринятым. Но настораживает тот факт, что в процессе «познания» патентуется вообще все, что только можно запатентовать. Тут даже не шкура не убитого медведя, а вообще все, что находилось в берлоге, было поделено!

Кстати, на сегодня дебаты сбавили обороты, и геном человека официально насчитывает только 21667 генов (версия NCBI 35, датированная октябрём 2005 года). Следует отметить, что пока большая часть информации всё-таки остаётся общедоступной. Сейчас существуют базы данных, в которых аккумулирована информация о структуре генома не только человека, но и геномов многих других организмов (например, EnsEMBL). Однако попытки получить исключительные права на использование каких-либо генов или последовательностей в коммерческих целях всегда были, есть сейчас и будут предприниматься впредь.

На сегодня основные цели структурной части программы уже в основном выполнены – геном человека почти полностью прочитан. Первый, «черновой» вариант последовательности, опубликованный в начале 2001 года, был далек от совершенства. В нём отсутствовало приблизительно 30% последовательности генома в целом, из них около 10% последовательности так называемого эухроматина – богатых генами и активно экспрессирующихся участков хромосом.

Согласно последним подсчётам, эухроматин составляет примерно 93.5% от всего генома. Оставшиеся же 6.5% приходятся на гетерохроматин – эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность. Более того, считается, что ДНК в гетерохроматине находится в неактивном состоянии и не экспрессируется. (Этим можно объяснить такое «невнимание» ученых к оставшимся «малым» процентам человеческого генома.)

Но даже имевшиеся на 2001 год «черновые» варианты эухроматиновых последовательностей содержали большое количество разрывов, ошибок и неверно соединенных и ориентированных фрагментов. Нисколько не умаляя значения для науки и ее приложений появление этого «черновика», стоит однако отметить, что использование этой предварительной информации в крупномасштабных экспериментах по анализу генома в целом (например, при исследовании эволюции генов или общей организации генома) выявило множество неточностей и артефактов. Поэтому дальнейшая и не менее кропотливая работа, «последние вершки», была абсолютно необходима.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Таким образом, изначальный план проекта был значительно перевыполнен. Помогло ли это нам в понимании того, как устроен и работает наш геном? Безусловно. Авторы статьи в Nature, в которой был опубликован «окончательный» (на 2004 год) вариант генома, провели с его использованием несколько анализов, которые были бы абсолютно бессмысленны, имей они на руках только «черновую» последовательность. Оказалось, что более тысячи генов «родились» совсем недавно (по эволюционным меркам, конечно) – в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше сорока генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными.

Другая статья, вышедшая в том же номере журнала Nature, прямо указывает на недостатки метода, использованного учеными из Celera. Следствием этих недостатков стали пропуски многочисленных повторов в прочитанных последовательностях ДНК и, как результат, недооценённая длина и сложность всего генома. Чтобы не повторять подобных ошибок в будущем, авторы статьи предложили использовать гибридную стратегию – комбинацию высокоэффективного подхода, использовавшегося учеными из Celera, и сравнительно медленного и трудоемкого, но и более надежного метода, применявшегося исследователями из IHGSC.

Куда дальше будет направлено беспрецедентное исследование «Геном человека»? Кое-что об этом можно сказать уже сейчас. Основанный в сентябре 2003 года международный консорциум ENCODE (ENCyclopaedia Of DNA Elements) поставил своей целью обнаружение и изучение «управляющих элементов» (последовательностей) в геноме человека. Действительно, ведь 3 млрд. пар оснований (а именно такова длина генома человека) содержат всего лишь 22 тыс. генов, разбросанных в этом океане ДНК непонятным для нас образом. Что управляет их экспрессией? Зачем нам такой избыток ДНК? Действительно ли он является балластом, или же все-таки проявляет себя, обладая какими-то неизвестными функциями?

Для начала, в качестве пилотного проекта, ученые из ENCODE «пристально вгляделись» в последовательность, составляющую 1% от генома человека (30 млн. пар оснований), используя новейшее оборудование для исследований в молекулярной биологии. Результаты были опубликованы в Nature в апреле нынешнего года. Оказалось, что бoльшая часть генома человека (в том числе участки, считавшиеся ранее «молчащими») служит матрицей для производства различных РНК, многие из которых не являются информационными, поскольку не кодируют белков. Многие из этих «некодирующих» РНК перекрываются с «классическими» генами (участками ДНК, кодирующими белки).

Неожиданным результатом было и то, как регуляторные участки ДНК были расположены относительно генов, экспрессией которых они управляли. Последовательности многих из этих участков мало изменялись в процессе эволюции, в то время как другие участки, считавшиеся важными для управления клеткой, мутировали и изменялись в процессе эволюции с неожиданно высокой скоростью. Все эти находки поставили большое количество новых вопросов, ответы на которые можно получить лишь в дальнейших исследованиях.

Другая задача, решение которой станет делом недалекого будущего, – определение последовательности оставшихся «малых» процентов генома, составляющих гетерохроматин, т. е. бедных генами и богатых повторами участков ДНК, необходимых для удвоения хромосом в процессе деления клетки. Наличие повторов делает задачу расшифровки этих последовательностей неразрешимой для существующих подходов, и, следовательно, требует изобретения новых методов. Поэтому не удивляйтесь, когда году в 2010 выйдет очередная статья, объявляющая об «окончании» расшифровки генома человека – в ней будет рассказано о том, как был «взломан» гетерохроматин.

Конечно, сейчас в нашем распоряжении имеется лишь некий «усредненный» вариант человеческого генома. Образно говоря – мы сегодня имеем лишь самое общее описание конструкции автомобиля: мотор, ходовая часть, колёса, руль, сиденья, краска, обивка, бензин с маслом и т. д. Ближайшее рассмотрение полученного результата свидетельствует о том, что впереди – годы работ по уточнению наших знаний по каждому конкретному геному.

Программа «Геном человека» не прекратила свое существование, она лишь меняет ориентацию: от структурной геномики осуществляется переход к геномике функциональной, предназначенной установить, как управляются и работают гены. Более того, все люди на уровне генов отличаются так же, как одни и те же модели автомобилей отличаются различными вариантами исполнения одних и тех же агрегатов. Не только отдельные основания в последовательностях генов двух разных людей могут отличаться, но и количество копий крупных фрагментов ДНК, порой включающих в себя несколько генов, может сильно варьировать.

А это означает, что на передний план выходят работы по детальному сравнению геномов, скажем, представителей различных человеческих популяций, этнических групп, и даже здоровых и больных людей. Современные технологии позволяют быстро и точно проводить такие сравнительные анализы, а ведь еще лет десять назад об этом никто и не мечтал. Изучением структурных вариаций человеческого генома занимается очередное международное научное объединение.

В США и Европе значительные средства выделяются на финансирование биоинформатики – молодой науки, возникшей на стыке информатики, математики и биологии, без которой никак не разобраться в безграничном океане информации, накопленном в современной биологии. Биоинформационные методы помогут нам ответить на многие интереснейшие вопросы – «как происходила эволюция человека?», «какие гены определяют те или иные особенности человеческого организма?», «какие гены ответственны за предрасположенность к болезням?»

Знаете, как говорят англичане: «This is the end of the beginning» – «Это конец начала». Так называется статья Lincoln D. Stein из Cold Spring Harbor Laboratory (Nature (2004) 431, 915-916), и именно эта фраза точно отражает нынешнюю ситуацию. Начинается самое главное и – я совершенно уверен – самое интересное: накопление результатов, их сравнение и дальнейший анализ.

«...Сегодня мы выпускаем в свет первое издание „Книги жизни» с нашими инструкциями», – сказал в эфире телеканала «Россия» Фрэнсис Коллинз. – «Мы будем обращаться к нему десятки, сотни лет. И уже скоро люди зададутся вопросом, как они могли обходиться без этой информации».

Другую точку зрения можно проиллюстрировать, процитировав академика В.А. Кордюма:

«...Надежды же на то, что новая информация о функциях генома будет полностью открытой, чисто символические. Можно прогнозировать, что возникнут (на базе уже имеющихся) гигантские центры, которые смогут все данные соединить в одно связное целое, некую электронную версию Человека и реализовывать её практически – в гены, белки, клетки, ткани, органы и что угодно ещё. Но во что? Угодное кому? Для чего? В процессе работ по программе «геном человека» стремительно совершенствовались методы и аппаратура для определения первичной последовательности ДНК. В крупнейших центрах это превратилось в некое подобие заводской деятельности.

Но даже на уровне лабораторных индивидуальных приборов (вернее их комплексов) уже создано столь совершенное оборудование, что оно способно определить за 3 месяца такую по объему последовательность ДНК, которая равна всему геному человека. Не удивительно, что возникла (и тут же начала стремительно реализоваться) идея определения геномов индивидуальных людей. Безусловно, это очень интересно – сравнить отличия разных индивидуумов на уровне их первоосновы. Польза от такого сравнения тоже несомненная. Можно будет установить, у кого имеются какие нарушения в геноме, прогнозировать их последствия и устранить то, что может привести к болезням. Здоровье будет гарантированным, да и жизнь продлится весьма существенно. Это с одной стороны.

С другой же стороны всё совсем не очевидно. Получить и проанализировать всю наследственность индивидуума означает получение полного, исчерпывающего биологического досье на него. Оно, при желании того, кто его знает, позволит столь же исчерпывающе делать с человеком всё что угодно. По уже известной цепочке: клетка – молекулярная машина; человек состоит из клеток; клетка во всех своих проявлениях и во всём диапазоне возможных ответов, записана в геноме; с геномом можно ограниченно уже и сегодня манипулировать, а в обозримом будущем вообще манипулировать практически как угодно...»

Однако, наверное, пугаться таких мрачных прогнозов еще рано (хотя знать о них, безусловно, нужно). Для их осуществления надо полностью перестраивать многие социальные и культурные традиции. Очень хорошо по этому поводу сказал в интервью доктор биологических наук Михаил Гельфанд, и.о. заместителя директора Института проблем передачи информации РАН: «...если у вас есть, предположим, один из пяти генов, предопределяющих развитие шизофрении, то что может случиться, если эта информация – ваш геном – попала в руки вашего потенциального работодателя, который ничего в геномике не понимает! (и как следствие – вас на работу могут не принять, посчитав это рискованным; и это не смотря на то, что шизофрении у вас нет и не будет – прим. автора.)

Другой аспект: с появлением индивидуализированной медицины, основанной на геномике, полностью изменится страховая медицина. Ведь одно дело – предусматривать риски неизвестные, а другое дело – совершенно определенные. Если честно, то все западное общество в целом, не только российское, к геномной революции сейчас не готово...».

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном – не просто прочитать, этого далеко не достаточно, – нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки – зависит от нас.

Геном человека - международная программа, конечной целью которой является определение нуклеотидной последовательности (секвенирование ) всей геномной ДНК человека, а также идентификация генов и их локализация в геноме (картирование ).

Исходная идея проекта зародилась в 1984 среди группы физиков, работавших в Министерстве энергетики США и желавших заняться другой задачей после завершения работ в рамках ядерных проектов. В 1988 Объединенный комитет, куда входили Министерство энергетики США и Национальные институты здоровья, представили обширный проект, в задачи которого – помимо секвенирования генома человека – входило всестороннее изучение генетики бактерий, дрожжей, нематоды, плодовой мушки и мыши (эти организмы широко использовались в качестве модельных систем в изучении генетики человека). Кроме того, предусматривался детальный анализ этических и социальных проблем, возникающих в связи с работой над проектом. Комитету удалось убедить Конгресс выделить на проект 3 млрд. долларов (один нуклеотид ДНК – за один доллар), в чем немалую роль сыграл ставший во главе проекта Нобелевский лауреат Дж. Уотсон . Вскоре к проекту присоединились другие страны (Англия, Франция, Япония и др.). В России в 1988 с идеей секвенирования генома человека выступил академик А.А.Баев , и в 1989 в нашей стране был организован научный совет по программе «Геном человека».

В 1990 была создана Международная организация по изучению генома человека (HUGO ), вице-президентом которой в течение нескольких лет был академик А.Д.Мирзабеков . С самого начала работ по геномному проекту ученые договорились об открытости и доступности всей получаемой информации для его участников независимо от их вклада и государственной принадлежности. Все 23 хромосомы человека были поделены между странами-участницами. Российские ученые должны были исследовать структуру 3-й и 19-й хромосом. Вскоре финансирование этих работ в нашей стране было урезано, и реального участия в секвенировании Россия не принимала. Программа геномных исследований в нашей стране была полностью перестроена и сконцентрирована на новой области – биоинформатике, которая пытается с помощью математических методов понять и осмыслить все, что уже расшифровано. Закончить работу предполагалось через 15 лет, т.е. примерно к 2005. Однако скорость секвенирования с каждым годом возрастала, и если в первые годы она составляла несколько миллионов нуклеотидных пар за год по всему миру, то на исходе 1999 частная американская фирма «Celera» , возглавляемая Дж.Вентером (J.Venter) , расшифровывала не менее 10 млн. нуклеотидных пар в сутки. Этого удалось достичь благодаря тому, что секвенирование осуществляли 250 роботизированных установок; они работали круглосуточно, функционировали в автоматическом режиме и сразу же передавали всю информацию непосредственно в банки данных, где она систематизировалась, аннотировалась и становилась доступной ученым всего мира. Кроме того, фирма «Celera» широко использовала данные, полученные в рамках Проекта другими его участниками, а также разного рода предварительные данные. 6 апреля 2000 состоялось заседание Комитета по науке Конгресса США, на котором Вентер заявил, что его компания завершила расшифровку нуклеотидной последовательности всех существенных фрагментов генома человека и что предварительная работа по составлению нуклеотидной последовательности всех генов (предполагалось, что их 80 тыс. и что они содержат примерно 3 млрд. нуклеотидов), наконец, завершена.

Доклад был сделан в присутствии представителя HUGO, крупнейшего специалиста по секвенированию д-ра Р.Уотерсона. Расшифрованный фирмой «Celera» геном принадлежал анонимному мужчине, т.е. содержал как X-, так и Y-хромосомы, а HUGO использовали в своих исследованиях материал, полученный от разных людей. Между Вентером и HUGO велись переговоры о совместной публикации результатов, однако они закончились безрезультатно из-за разногласий по поводу того, что считать завершением расшифровки генома. По мнению компании «Celera», об этом можно говорить лишь в том случае, если гены полностью секвенированы и известно, как расшифрованные сегменты располагаются в молекуле ДНК. Этому требованию удовлетворяли результаты «Celera», в то время как результаты HUGO не позволяли однозначно определить взаимное положение расшифрованных участков. В результате в феврале 2001 в специальных выпусках двух авторитетнейших научных журналов, «Science» и «Nature» , были раздельно опубликованы результаты исследований «Celera» и HUGO и приведены полные нуклеотидные последовательности генома человека, охватывающие около 90% его длины.

Исследования генома человека «потянули» за собой секвенирование геномов огромного числа других организмов, гораздо более простых; без геномного проекта эти данные были бы получены гораздо позже и в гораздо меньшем объеме. Их расшифровка ведется все возрастающими темпами. Первым крупным успехом стало полное картирование в 1995генома бактерии Haemophilus influenzae , позже были полностью расшифрованы геномы более 20 бактерий, среди которых – возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 картировали геном первой эукариотической клетки (клетки, содержащей оформленное ядро) – дрожжевой , а в 1998 впервые секвенировали геном многоклеточного организма – круглого червя Caenorhabolits elegans (нематоды ). Завершена расшифровка генома первого насекомого – плодовой мушки дрозофилы и первого растения – арабидопсиса . У человека уже установлено строение двух самых маленьких хромосом – 21-й и 22-й. Все это создало основы для создания нового направления в биологии – сравнительной геномики .

Знание геномов бактерий, дрожжей и нематоды дает биологам-эволюционистам уникальную возможность сравнения не отдельных генов или их ансамблей, а целиком геномов. Эти гигантские объемы информации только начинают осмысливаться, и нет сомнения, что нас ждет появление новых концепций в биологической эволюции. Так, многие «личные» гены нематоды, в отличие от генов дрожжей, скорее всего, связаны с межклеточными взаимодействиями, характерными именно для многоклеточных организмов. У человека генов только в 4–5 раз больше, чем у нематоды, следовательно, часть его генов должна иметь «родственников» среди известных теперь генов дрожжей и червя, что облегчает поиск новых генов человека. Функции неизвестных генов нематоды изучать гораздо проще, чем у аналогичных генов человека: в них легко вносить изменения (мутации) или выводить их из строя, одновременно прослеживая изменения свойств организма. Выявив биологическую роль генных продуктов у червя, можно экстраполировать эти данные на человека. Другой подход – подавление активности генов с помощью особых ингибиторов и отслеживание изменений в поведении организма.

Весьма интересным представляется вопрос о соотношении кодирующих и некодирующих областей в геноме. Как показывает компьютерный анализ, у C.elegans примерно равные доли – 27 и 26% соответственно – занимают в геноме экзоны (участки гена, в которых записана информация о структуре белка или РНК) и интроны (участки гена, не несущие подобной информации и вырезаемые при образовании зрелой РНК). Остальные 47% генома приходится на повторы, межгенные участки и т.д., т.е. на ДНК с неизвестными функциями. Сравнив эти данные с дрожжевым геномом и геномом человека, мы увидим, что доля кодирующих участков в расчете на геном в ходе эволюции резко уменьшается: у дрожжей она очень высока, у человека очень мала. Налицо парадокс: эволюция эукариот от низших форм к высшим сопряжена с «разбавлением» генома – на единицу длины ДНК приходится все меньше информации о структуре белков и РНК и все больше информации «ни о чем», на самом деле просто непонятой и непрочитанной нами. Много лет назад Ф.Крик , один из авторов «двойной спирали» – модели ДНК, – назвал эту ДНК «эгоистической», или «мусорной». Возможно, какая-то часть ДНК человека действительно относится к такому типу, однако теперь ясно, что основная доля «эгоистической» ДНК сохраняется в ходе эволюции и даже увеличивается, т.е. почему-то дает ее обладателю эволюционные преимущества.

Еще один важный результат, имеющий общебиологическое (и практическое) значение – вариабельность генома . Вообще говоря, геном человека высококонсервативен. Мутации в нем могут либо повредить его, и тогда они приводят к тому или иному дефекту или гибели организма, либо оказаться нейтральными. Последние не подвергаются отбору, поскольку не имеют фенотипического проявления. Однако они могут распространяться в популяции, и если их доля превышает 1%, то говорят о полиморфизме (многообразии) генома. В геноме человека очень много участков, различающихся всего одним-двумя нуклеотидами, но передающихся из поколения в поколение. С одной стороны, этот феномен мешает исследователю, поскольку ему приходится разбираться, имеет ли место истинный полиморфизм или это просто ошибка секвенирования, а с другой – создает уникальную возможность для молекулярной идентификации отдельного организма. С теоретической точки зрения вариабельность генома создает основу генетики популяций, которая ранее основывалась на чисто генетических и статистических данных.

Самые большие надежды и ученые, и общество возлагают на возможность применения результатов секвенирования генома человека для лечения генетических заболеваний . К настоящему времени в мире идентифицировано множество генов, ответственных за многие болезни человека, в том числе и такие серьезные, как болезнь Альцгеймера, муковисцидоз, мышечная дистрофия Дюшенна, хорея Гентингтона, наследственный рак молочной железы и яичников. Структуры этих генов полностью расшифрованы, а сами они клонированы. Еще в 1999 была установлена структура 22-й хромосомы и определены функции половины ее генов. С дефектами в них связано 27 различных заболеваний, в том числе шизофрения, миелолейкоз и трисомия 22 – вторая по распространенности причина спонтанных абортов. Самым эффективным способом лечения таких больных была бы замена дефектного гена здоровым. Для этого, во-первых, необходимо знать точную локализацию гена в геноме, а во-вторых – чтобы ген попал во все клетки организма (или хотя бы в большинство), а это при современных технологиях невозможно. Кроме того, даже попавший в клетку нужный ген мгновенно распознается ею как чужой, и она пытается избавиться от него. Таким образом, «вылечить» удается только часть клеток и только на время. Еще одно серьезное препятствие на пути применения генной терапии – мультигенная природа многих заболеваний, т.е. их обусловленность более чем одним геном. Итак, массового применения генной терапии в ближайшем будущем вряд ли стоит ожидать, хотя успешные примеры такого рода уже есть: удалось добиться существенного облегчения состояния ребенка, страдающего тяжелым врожденным иммунодефицитом, путем введения ему нормальных копий поврежденного гена. Исследования в этой области ведутся по всему миру, и, может быть, успехи будут достигнуты раньше, чем предполагается, как это и произошло с секвенированием генома человека.

Еще одно важное применение результатов секвенирования – идентификация новых генов и выявление среди них тех, которые обусловливают предрасположенность к тем или иным заболеваниям . Так, есть данные о генетической предрасположенности к алкоголизму и наркомании, открыто уже семь генов, дефекты в которых приводят к токсикомании. Это позволит проводить раннюю (и даже пренатальную) диагностику заболеваний, предрасположенность к которым уже установлена.

Широкое применение несомненно найдет и еще один феномен: обнаружилось, что разные аллели одного гена могут обусловливать разные реакции людей на лекарственные препараты. Фармацевтические компании планируют использовать эти данные для производства лекарств, предназначенных разным группам пациентов. Это поможет избежать побочных эффектов терапии, снизить миллионные затраты. Возникает целая новая отрасль – фармакогенетика , которая изучает, как те или иные особенности строения ДНК могут повлиять на эффективность лечения. Появятся совершенно новые подходы к созданию лекарственных средств, основанные на открытии новых генов и изучении их белковых продуктов. Это позволит перейти от неэффективного метода «проб и ошибок» к целенаправленному синтезу лекарственных веществ.

Важный практический аспект вариабельности генома – возможность идентификации личности . Чувствительность методов «геномной дактилоскопии» такова, что достаточно одной капли крови или слюны, одного волоса, чтобы с абсолютной достоверностью (99,9%) установить родственные связи между людьми. После секвенирования генома человека этот метод, использующий теперь не только специфические маркеры в ДНК, но и однонуклеотидный полиморфизм, станет еще более надежным. Вариабельность генома породила направление геномики – этногеномику . Этнические группы, населяющие Землю, имеют некоторые групповые генетические признаки, характерные для данного этноса. Получаемая информация в ряде случаев может подтвердить или опровергнуть те или иные гипотезы, циркулирующие в рамках таких дисциплин, как этнография, история, археология, лингвистика. Еще одно интересное направление – палеогеномика , занимающаяся исследованием древней ДНК, извлеченной из останков, найденных в могильниках и курганах.

Финансирование «геномной гонки» и участие в ней тысяч специалистов основывались прежде всего на постулате, что расшифровка нуклеотидной последовательности ДНК сможет решить фундаментальные проблемы генетики. Оказалось, однако, что лишь 3% генома человека кодируют белки и участвуют в регуляции действия генов в ходе развития. Каковы функции остальных участков ДНК и есть ли они вообще – остается совершенно неясным. Около 10% генома человека составляют так называемые Alu-элементы длиной 300 п.н. Они появились неизвестно откуда в ходе эволюции у приматов, и только у них. Попав к человеку, они размножались до полумиллиона копий и распределились по хромосомам самым причудливым образом, то образуя сгустки, то прерывая гены.

Другая проблема касается самих кодирующих участков ДНК. При чисто молекулярно-компьютерном анализе возведение этих участков в ранг генов требует соблюдения сугубо формальных критериев: есть в них знаки пунктуации, необходимые для прочитывания информации, или нет, т.е. синтезируется ли на них конкретный генный продукт и что он собой представляет. В то же время роль, время и место действия большинства потенциальных генов пока неясны. По мнению Вентера, для определения функций всех генов может потребоваться не меньше ста лет.

Далее необходимо договориться, что вкладывать в само понятие «геном». Часто под геномом понимается лишь генетический материал как таковой, однако с позиции генетики и цитологии его составляет не только структура элементов ДНК, но и характер связей между ними, который определяет, как гены будут работать и как пойдет индивидуальное развитие при определенных условиях среды. И, наконец, нельзя не упомянуть о феномене так называемой «неканонической наследственности» , привлекшем к себе внимание в связи с эпидемией «коровьего бешенства». Эта болезнь стала распространяться в Великобритании в 1980-х годах после того, как в корм коровам стали добавлять переработанные головы овец, среди которых встречались овцы, больные скрэпи (нейродегенеративное заболевание). Сходная болезнь стала передаваться людям, употреблявшим в пищу мясо больных коров. Обнаружилось, что инфекционным агентом являются не ДНК или РНК, а белки-прионы. Проникая в клетку-хозяина, они изменяют конформацию нормальных белков-аналогов. Феномен прионов обнаружен также у дрожжей.

Таким образом, попытка представить расшифровку генома как чисто научно-техническую задачу несостоятельна. А между тем такой взгляд широко пропагандируется даже весьма авторитетными учеными. Так, в книге «Код кодов» (The Code of Codes, 1993) У.Гилберт , открывший один из методов секвенирования ДНК, рассуждает о том, что определение нуклеотидной последовательности всей ДНК человека приведет к изменениям в наших представлениях о самих себе. «Три миллиарда пар оснований могут быть записаны на одном компакт-диске. И любой может вытащить из кармана свой диск и сказать: «Вот он – Я!» Между тем необходимо знать не только порядок следования звеньев в цепи ДНК и не только взаимное расположение генов и их функции. Важно выяснить характер связей между ними, который определяет, как гены будут работать в конкретных условиях – внутренних и внешних. Ведь многие болезни человека обусловливаются не дефектами в самих генах, а нарушениями их согласованных действий, системы их регуляции.

Расшифровка генома человека и других организмов не только привела к прогрессу во многих областях биологии, но и породило множество проблем. Одна из них – идея «генетического паспорта», в котором будет указано, несет ли данный человек опасную для здоровья мутацию. Предполагается, что эти сведения будут конфиденциальными, но никто не может гарантировать, что не произойдет утечки информации. Прецедент уже был в случае «генетической паспортизации» афроамериканцев с той целью, чтобы определить, являются ли они носителями гена гемоглобина, содержащего мутацию, которая связана с серповидноклеточной анемией. Эта мутация распространена в Африке в малярийных районах, и если она присутствует в одном аллеле, то обеспечивает носителю устойчивость к малярии, обладатели же двух копий (гомозиготы) умирают в раннем детстве. В 1972 в рамках борьбы с малярией на «паспортизацию» было истрачено более 100 млн. долл., а после выполнения программы выяснилось, что а) у здоровых людей, носителей мутации, возникает комплекс вины, эти люди чувствуют себя не совсем нормальными, и такими их начинают воспринимать окружающие; б) появились новые формы сегрегации – отказ в приеме на работу. В настоящее время некоторые страховые компании выделяют средства на проведение ДНК-тестов в отношении ряда заболеваний, и если будущие родители, носители нежелательного гена, не соглашаются на прерывание беременности и у них рождается больной ребенок, им могут отказать в социальной поддержке.

Другая опасность – эксперименты по трансгенозу, созданию организмов с пересаженными от других видов генами, и распространению таких «химер» в окружающей среде. Здесь особую опасность представляет необратимость процесса. Если атомную станцию можно закрыть, использование ДДТ и аэрозолей прекратить, то изъять из биологической системы новый организм невозможно. Мобильные гены, открытые МакКлинток у растений, и сходные с ними плазмиды микроорганизмов передаются в природе от вида к виду. Ген, вредный или полезный (с точки зрения человека) для одного вида, может со временем перейти к другому виду и непредсказуемым образом изменить характер своего действия. В Америке мощная биотехнологическая компания «Монсанто» создала сорт картофеля, в клетки которого включен бактериальный ген, кодирующий токсин, который убивает личинок колорадского жука. Утверждается, что этот белок безвреден для человека и животных, однако страны Европы не дали разрешения на выращивание у себя этого сорта. Картофель испытывается в России. Опыты с трансгенными растениями предусматривают строжайшую изоляцию делянок с подопытными растениями, однако на охраняемых полях с трансгенными растениями Института фитопатологии в Голицыне под Москвой ремонтные рабочие выкопали картошку и тут же ее съели. На юге Франции ген устойчивости к насекомым «перескочил» от культурных растений к сорнякам. Другой пример опасного трансгеноза – выпуск в озера Шотландии лосося, который набирает вес в 10 раз быстрее, чем обычный лосось. Существует опасность, что этот лосось попадет в океан и нарушит сложившееся популяционное равновесие у других видов рыб.

Вот как сформулировал прогноз Ф.Коллинз, руководитель программы "Геном человека" (США).

2010 год

Генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсестры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, яростно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Не всем доступны практические приложения геномики, особенно в развивающихся странах.

2020 год

На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Терапия рака, прицельно направленная на свойства раковых клеток. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

2030 год

Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее 1000 $. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека.

Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.

2040 год

Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (при/до рождения).

Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни детектируются на ранних стадиях путем молекулярного мониторинга.

Для большинства заболеваний доступна генная терапия.

Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря социоэкономическим мерам. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.

Как всякое научное открытие, расшифровка генома человека привела к появлению новых важных научных направлений, бурным развитием которых ознаменовалось начало 21 века – функциональная геномика (functional genomics), генетическое разнообразие (human genome diversity), этические, правовые и социальные аспекты исследований генома человека (ethical’legal and social implications - ELSI).

Задачей функциональной геномики является изучение функций новых генов, точнее генных ансамблей, так называемых «генных сетей» в нормальном развитии органов, тканей и при различных заболеваниях. Исследование генетического разнообразия проливает свет на эволюцию человека, проблемы этногенеза, т.е. происхождение рас, национальностей, этнических групп и пр. Они особенно важны и для выяснения наследственной предрасположенности человека к различным, в том числе и наиболее частым заболеваниям. Огромное значение на современном этапе приобретают исследования путей адаптации человека к серьезным переменам в медицине и обществе, вызванными быстро нарастающей «генетизацией» человечества.

Одним из важнейших итогов изучения генома человека является возникновение и быстрое развитие нового направления медицинской науки – молекулярной медицины - медицины, основанной на диагностике, лечении и профилактике наследственных и ненаследственных болезней с помощью самих генов, точнее нуклеиновых кислот. Что же отличает молекулярную медицину от обычной медицины? Прежде всего, универсальность диагностики основанная на точных методах анализа самих генов. Ее профилактическая направленность, то есть возможность диагностировать или с высокой вероятностью предсказывать то или иное заболевание (предиктивная медицина). Четко выраженная индивидуальность лечения (лекарства должны подбираться каждому больному строго индивидуально). Наконец, использования для лечения разных наследственных и ненаследственных болезней самих генов и их продуктов (генная терапия). Что же такое предиктивная медицина? Как показывают результаты сравнительного анализа, частота индивидуальной вариабельности молекулярной структуры геномов разных людей составляет около 0,1%. Это означает, что такие различия (замены отдельных букв) встречаются очень часто – примерно через каждые 400 знаков, что предполагает наличие 9 000 000 замен на каждый геном. Важно, что такие варианты не редко встречаются внутри самих генов. Их результатом могут быть замены букв в генетическом коде (полиморфизмы), в результате которых синтезируются белки с необычными, часто сильно измененными свойствами, отличными от нормальных. Наличие таких функционально различных белков (изоферментов), гормонов и пр. создает уникальный биохимический паттерн каждого человека.

Подобные замены в генах (полиморфизмы) далеко не всегда нейтральны. Они, а точнее продукты таких генов, как правило, работают менее эффективно и делают человека уязвимым к тому или иному заболеванию. Особенно ярко эту мысль выразил Фрэнсис Коллинз - директор Международной Программы "Геном Человека": «Никто из нас не совершенен. Все больше генетических тестов становится доступно и каждый из нас, в конечном счете, обнаруживает у себя мутацию, предрасполагающую к какой-нибудь болезни». Действительно, именно при помощи генетических тестов у человека любого возраста, а при необходимости даже внутриутробно, можно установить предрасположенность к тому или иному заболеванию. При этом, естественно, тестированию подвергаются не все, а только определенные гены (гены «предрасположенности», то есть гены, полиморфизмы (мутации) которых совместимы с жизнью, но при определенных неблагоприятных воздействиях внешних факторов (лекарства, диета, загрязнения воды, воздуха и пр.) или продуктов других генов могут быть причиной различных, так называемые мультифакториальных заболеваний. Существенно подчеркнуть, что причиной большинства заболеваний являются мутации не отдельных, а многих разных генов (т.н. генных сетей), обеспечивающих соответствующие метаболические процессы. В последнее время именно расшифровка составляющих элементов таких генных сетей при различных заболеваниях, выяснение роли полиморфизмов отдельных генов в их возникновении составляет горячую область предиктивной медицины.

Важным разделом предиктивной медицины является фармакогенетика - выяснение генетически обусловленных особенностей индивидуальной реакции организма на различные фармпрепараты. По некоторым данным ежегодно в мире погибает более 100 000 человека в связи с неправильной дозировкой лекарственных веществ, игнорирующей индивидуальную вариабельность действия лекарств. В настоящее время разработаны и широко используются в различных лабораториях и диагностических центрах, многочисленные генетические тесты. Часть из них направлена на выявление носителей мутантных генов, приводящих к различным тяжелым наследственным заболеваниям. Эти тесты особенно актуальны в семьях высокого риска, где уже есть больной ребенок. Они позволяют выяснить в семье носителей соответствующих мутантных генов и предотвратить рождение заведомо больного ребенка после своевременной дородовой (пренатальной) диагностики. Существует, однако, большая группа нейродегенеративных и некоторых онкологических заболеваний, первые клинические проявления которых наблюдаются сравнительно поздно, уже у взрослых. Для таких болезней разработаны методы досимптоматической диагностики.

В настоящее время, как показывает анализ мировой литературы, уже доступны для клинического применения около 150-200 генетических тестов Их широко применяют в различных центрах США и стран Западной Европы, особенно во Франции, Великобритании и в Германии. Во Франции, например, разработана и уже используется в медицинской практике система SESAM (System Expert Specialisee aux Analyae Medicale). Она основана на компьютерной интерпретации результатов генетического тестирования, а так же результаты биохимических, серологических и иммунологических анализов. В ходе ее выполнения уже используют свыше 80 тестов, которые обрабатывают при помощи специальной компьютерной программы. Особенно существенный вклад вносит данная программа в Предиктивную Медицину. Основной упор при этом делается на интерпретацию результатов различных генетических тестов, и, в первую очередь, тестов по изучению состояния генов системы детоксикации, ответственных за чувствительность человека к самым различным внешним воздействиям, особенно к химическим препаратам, лекарствам и другим ксенобиотикам. В Великобритании уже началось осуществление масштабного проекта по созданию Биобанка , содержащего генетическую информацию более 500 000 британцев разных рас и этнических групп с целью изучения диабета, рака, болезни Альцгеймера, сердечно-сосудистых заболеваний. Предполагается, что данный проект, в случае его успешной реализации, станет началом новой эры в медицине, так как с его помощью станет возможным прогнозировать и лечить заболевания, основываясь на индивидуальных генетических особенностях пациентов.

Программа массовой генетической паспортизации всего населения и, прежде всего, молодежи уже начата в Эстонии. В России такая Программа пока отсутствует. Однако различные предиктивные генетические тесты уже проводятся в разных молекулярных лабораториях и центрах Москвы, Санкт-Петербурга, Новосибирска, Томска и Уфы.

Естественно, что гены системы детоксикации (они же - гены метаболизма) представляют собой лишь одно из многих семейств генов, тестирование которых важно для целей предиктивной медицины. Существенная роль в наследственной предрасположенности принадлежит и другим генам, в частности, генам, контролирующим трансмембранный перенос метаболитов, а так же генам, продукты которых играют ключевую роль в клеточном метаболизме (гены-триггеры).

Таким образом, как ни печально, приходится признать, что человек рождается уже с набором генов, предрасполагающих его к тому или иному тяжелому заболеванию. При чем в каждой семье и у каждого человека выраженность наследственной предрасположенности к конкретной болезни сугубо индивидуальна. Тестирование соответствующих генов позволяет не только выявить лиц с повышенным риском этих и других мультифакториальных заболеваний, но и оптимизировать стратегию их лечения.

Существенно подчеркнуть, что достаточно объективная информация о наследственной предрасположенности к любому мультифакториальному заболеванию, которую мы унаследовали от родителей, может быть получена в результате тестирования не одного или двух, но сразу нескольких различных генов - главных генов предрасположенности в той или иной генной сети. В настоящее время методы тестирования многокомпонентных геннных сетей разработаны для более 25 мультифакториальных заболеваний. Ко всему сказанному добавим: идентификация всех генов человека, открытие новых генных сетей неизмеримо увеличивает возможности генетического тестирования наследственной предрасположенности и медико-генетического консультирования. Существенную помощь в этом могут оказать новые технологии. В частности, методы анализа с помощью микрочипов, которые позволяет одномоментно тестировать тысячи генетических полиморфизмов у одного человека или сразу несколько полиморфизмов у многих тысяч людей. Последний подход особенно важен для суждения о генетической структуре населения целого государства, что важно для планирования наиболее эффективной системы профилактики частых мультифакториальных болезней.

Итак, с помощью генетических тестов можно получить достаточно объективную информацию о том, какие болезни уже "выбрали" нас в момент формирования нашего генома на начальных этапах эмбрионального развития, то есть носителями каких мутантных генов мы являемся. Вполне реально уже сегодня узнать в какой мере уникальные особенности нашего генома могут представлять реальную угрозу для здоровья наших детей и близких родственников, могут привести нас самих к тяжелым, неизлечимым заболеваниям. Совокупность таких сведений о геноме каждого человека и позволяет говорить об индивидуальной базе данных. Внедрение в практическую медицину пренатальной (дородовой) диагностики наследственных болезней, скрининг (массовое обследование) носительства мутантных генов и генетических тестов активно способствуют формированию баз данных для отдельных индивидуумов и целых семей. Дополненная сведениями о кариотипе (наборе хромосом) и генетическим номером (уникальный генетический код каждого человека, устанавливаемый методами геномной дактилоскопии) и является основой расширенной индивидуальной базы данных человека - его "генетическим паспортом"). Проблема, однако, заключается в том, что далеко не каждый человек хочет и готов знать о подводных камнях своей наследственности. Не менее серьезной оказывается и проблема обязательной строгой конфиденциальности такой информации. Естественно, что решение этих и многих других проблем на пути широкого внедрения достижений современной генетики в жизнь требует их детального осмысления учеными и обществом. Назрела необходимость четкой юридической регламентации и гармоничной социальной адаптации применения достижений предиктивной медицины в практике здравоохранения.

Стратегические направления исследований генома человека.

Исследования генома человека уже привели к возникновению таких новых научных направлений, и, соответственно, программ как "Функциональная Геномика"; "Генетическое Разнообразие Человека"; "Этические, Правовые и Социальные Аспекты Исследований Генома Человека". Эти направления активно проникают во все сферы жизни человека, и позволяют уже сейчас говорить о быстро нарастающей "генетизации" человечества.

1. По мере стремительного увеличения числа картированных генов, все более очевидным становится недостаток данных об их функциях и, прежде всего, о функциональной значимости тех белков, которые они кодируют. Из более 30 тысяч генов уже идентифицированных на физической карте генома человека на сегодняшний день изучены в функциональном отношении не более 5-6 тыс. Какова функция остальных 25 тысяч уже картированных и такого же числа еще некартированных генов составляет важную стратегическую задачу исследований в программе "Функциональная Геномика" . Методы направленного мутагенеза эмбриональных стволовых клеток, создание банков кДНК различных тканей и органов на разных стадиях онтогенеза; разработка методов изучения функций участков ДНК, некодирующих белки; развитие новых технологий по сравнительному анализу экспрессии генов - вот уже существующие подходы в решении проблем функциональной геномики.

2. Геномы всех людей, за исключением однояйцовых близнецов, различны. Выраженные популяционные, этнические и, главное, межиндивидуальные различия геномов как в их смысловой части (экзоны структурных генов), так и в их некодирующих последовательностях (межгенные промежутки, интроны, пр.) обусловлены различными мутациями, приводящими к генетическому полиморфизму. Последний является предметом пристального изучения быстро набирающей силы программы "Генетическое Разнообразие Человека" . Решение многих проблем этногенеза, геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением. Близко примыкают к нему и исследования по Сравнительной Геномике (Comparative Genomics). Одновременно с человеком проводится секвенирование геномов других млекопитающих (мышь), а также насекомых (дрозофилы), червей (Caenorhabditis elegans). Есть основания предполагать, что компьютеризованный анализ геномов различных животных позволит создать Периодическую Систему Геномов. Будет ли она по аналогии с известной Периодической Системой Химических Элементов Д.И.Менделеева двумерной или окажется многомерной покажет будущее. Однако сама возможность создания такой Биологической Периодической Системы сегодня уже не представляется фантастичной.

3. По мере все более полной "генетизации" жизни человека, т.е. проникновения генетики не только во все разделы медицины, но и далеко за ее пределы, в том числе в социальные сферы, нарастающей заинтересованностью всех слоев мирового сообщества в достижениях генетики, все более очевидным для ученых, чиновников, правительств и просто образованных людей становится необходимость решения многочисленных этических, юридических, правовых и социальных проблем порождаемых успехами в изучении генома человека и познании его функций. Серии Этических, Правовых и Социальных программ, направленных на изучение проблем адаптации человека и общества в целом к восприятию достижений генетики.

Ученые расшифровали последнюю хромосому генома человека. Составлена карта самой сложной хромосомы человека. Хромосома 1 содержит почти в два раза больше генов, чем обычная хромосома, и составляет 8% генетического кода человека. Это самая крупная хромосома стала последней из 23 хромосом человека (22 парных плюс половые), расшифрованной в рамках проекта "Геном человека" (Human Genome), сообщает Reuters.

В данной хромосоме содержится 3141 ген, в том числе те, которые связаны с такими заболеваниями, как рак, болезни Альцгеймера и Паркинсона. "Данное достижение закрывает важный этап проекта "Геном человека", - говорит Саймон Грегори, руководитель проекта, которым занимается британский Институт Сэнгера.

Хромосома 1 является самой крупной и содержит наибольшее число генов. "Поэтому с этим участком генома связано наибольшее число заболеваний", - говорит Грегори.

На секвенсирование хромосомы 1 понадобилось 10 лет работы 150 британских и американских ученых. Результаты работы помогут исследователям во всем мире развивать методы диагностики и лечение рака, аутизма, психических расстройств и других заболеваний.

Хромосомы находятся в ядре клетки, они представляют нитеобразные структуры и содержат гены, которые определяют индивидуальные характеристики человека. Геном человека, по оценкам, состоит из 20-25 тыс. генов. В ходе секвенсирования хромосомы 1 было обнаружено 1000 новых генов.

Библиография

Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены "предрасположенности": Введение в предиктивную медицину. СПб., 2000
Боринская С.А., Янковский Н.К. Структура генома прокариот // Молекулярная биология. 1999. Т. 33. № 6
Бочков Н.П. Генетика человека и клиническая медицина // Вестн. РАМН. 2001. № 10
Генная терапия - медицина будущего / Под ред. А.В.Зеленина. М., 2000
Горбунова В.Н., Баранов В.С Введение в молекулярную диагностику и генотерапию наследственных заболеваний. СПБ., 1997
Пузырев В.П., Степанов В.А. Патологическая анатомия генома человека. Новосибирск, 1997
Тяжелова Т.В., Иванов Д.В., Баранова А.В., Янковский Н.К. Новые гены человека в области 13q14.3, обнаруженные in silico // Генетика. 2003. Т. 39. №6
Янковский Н.К., Боринская С.А. Геном человека: научные и практические достижения и перспективы: Аналитический обзор // Вестник РФФИ. 2003. № 2
Baranova A.V., Lobashev A.V., Ivanov D.V., Krukovskaya L.L., Yankovsky N.K., Kozlov A.P. In silico screening for tumour-specific expressed sequences in human genome // FEBS Lett. 2001. Nov. V. 9. № 508 (1)
Collins F.S., Green E.D., Guttmacher A.E., Guyer M.S. A vision for the future of genomics research. 2003. Nature. № 422
Mitochondrial DNA sequence diversity in Russians. Orekhov V., Poltoraus A., Zhivotovsky L.A., Spitsyn V., Ivanov P., Yankovsky N. // FEBS Lett. 1999. Feb. V. 19. № 445 (1)
Orekhov V., Ivanov P., Zhivotovsky L., Poltoraus A., Spitsyn V., Ginter E., Khusnutdinova E., Yankovsky N. MtDNA sequence diversity in three neighbouring ethnic groups of three language families from the European part of Russia // Archaeogenetics: DNA and the Population Prehistory of Europe / Ed. by. C. Renfrew, K. Boyle. Cambridge, 2000
The Human Genome // Nature. 2001. № 409
The Human Genome // Nature. 2003. № 421
Venter J.C., Adams M.D., Myers E.W. et al. The sequence of the human genome // 2001. Science. № 291

Материал взят из архива программы А. Гордона из раздела «Специальные проекты» сайта http://promo.ntv.ru, а также с сайта http://www.newsru.com из статьи «Ученые расшифровали последнюю хромосому генома человека» от 18 мая 2006 г.

«Сегодня, через десять лет после завершения Проекта по расшифровке генома человека, можно сказать: биология – намного сложнее, чем раньше представляли себе ученые», - так пишет Эрика Чек Хейден в выпуске Nature News за 31 марта и в выпуске журнала Nature за 1 апреля.1

Проект по расшифровке генома человека стал одним из самых больших научных достижений конца ХХ ст. Некоторые сравнивают его с Манхэттенским проектом (программа США по разработке ядерного оружия) или программой "Аполлон" (пилотируемые космические полеты НАСА). Ранее чтение последовательности из ДНК символов считалось скучной и кропотливой работой. Сегодня, расшифровка генома является чем-то естественным. Но вместе с появлением новых данных о геномах разнообразных организмов – от дрожжевых грибков до неандертальцев, стало очевидно: «По мере того, как секвенирование и другие прогрессивные технологии предоставляют нам новые данные, сложность биологии растет просто на глазах» , - пишет Хейден.

Некоторые открытия были удивительно простыми. Генетики ожидали обнаружить в человеческом геноме 100 тыс. генов, а их оказалось примерно 21 тыс. Но, к своему удивлению, наряду с ними ученые обнаружили и другие вспомогательные молекулы – факторы транскрипции, маленькие РНК, белки-регуляторы, активно и взаимосвязано действующие по схеме, которая просто не укладывается в голове. Хейден сравнила их с множеством Мандельброта во фрактальной геометрии, что доказывает еще более глубокий уровень сложности биологических систем.

«В самом начале мы думали, что пути передачи сигналов являются довольно простыми и прямыми, - говорит биолог из университета Торонто в Онтарио Тони Поусон. -Теперь мы понимаем, что передача информации в клетках происходит через целую информационную сеть, а не по простым, отдельным путям. Эта сеть – намного сложнее, чем мы думали».

Хейден признает, что концепция «мусорной ДНК» разбита в пух и прах . Относительно же представления, согласно которому регуляция генов является прямым и линейным процессом, т.е. гены кодируют белки-регуляторы, контролирующие транскрипцию, она отметила: «Всего десять лет постгеномной эры в биологии уничтожили такое представление». «Новый взгляд биологии на мир некодирующей ДНК, которую раньше называли «мусорной ДНК», очаровывает и сбивает с толку». Если эта ДНК мусорная, то почему человеческий организм расшифровывает от 74% до 93% этой ДНК? Изобилие маленьких РНК, образуемых этими некодирующими участками и то, как они взаимодействуют друг с другом, стало для нас полной неожиданностью.

Понимание всего этого рассеивает некую изначальную наивность Проекта по расшифровке генома человека . Исследователи намеревались «раскрыть тайны всего: от эволюции до происхождения болезней» . Ученые надеялись найти лекарство от рака и через генетический код проследить путь эволюции. Так было в 1990-х гг. Биолог-математик из университета Пенсильвании (Филадельфия) Джошуа Плоткин сказал: «Уже само существование этих необычайных белков-регуляторов говорит о том, каким невероятно наивным является наше понимание основных процессов, к примеру, каким образом запускается и останавливается работа клетки» . Генетик Принстонского университета (Нью-Джерси) Леонид Кругляк говорит: «Наивно полагать, что для понимания любого процесса (будь то биология, прогноз погоды или что-нибудь другое) достаточно просто взять огромное количество данных, пропустить их через программу анализа данных и понять, что происходит в ходе этого процесса» .

Однако некоторые ученые до сих пор ищут простоту в сложных системах. Принципы нисходящего анализа пытаются создать модели, в которых базовые точки отсчета становятся на свое место.

Новая дисциплина "Системная биология" разработана, чтобы помочь ученым понять сложность существующих систем. Биологи надеялись, что, перечислив все взаимодействия в схеме работы белка p53, клетки или между группой клеток, а затем, переснеся их на вычислительную модель, они смогут понять, как работают все биологические системы.

За бурные постгеномные годы системные биологи начали огромное количество проектов, построенных на основе этой стратегии: они попытались создать биологические модели таких систем, как клетка дрожжевых грибков, E. coli, печень и даже «виртуальный человек». В настоящее время все эти попытки натолкнулись на одно и то же препятствие: невозможно собрать всю значимую информацию о каждом взаимодействии, включенном в модель.

Схема работы белка p53, о котором говорит Хейден, является замечательным примером неожиданной сложности. Обнаруженный в 1979 г. белок p53 сначала считался промоутером (способствующим фактором) рака, а не его подавителем. «Несколько других белков были исследованы более досконально, чем белок p53 , – отметила ученая. -Однако история белка p53 оказалась намного более сложной, чем мы полагали вначале» . Она раскрыла некоторые подробности:

«Теперь исследователям известно, что белок p53 связывается с тысячами участками ДНК, и некоторые из этих участков являются тысячами пар оснований других генов. Этот белок оказывает влияние на рост, гибель и структуру клеток, а также на восстановление ДНК. Он также связывается с множеством других белков, которые могут изменять его активность, и эти взаимодействия между белками можно регулировать путем добавления таких химических модификаторов, как фосфатные и метиловые группы. С помощью процесса, известного как альтернативный сплайсинг, белок p53 может приобретать девять разных форм , каждая из которых имеет свою собственную активность и химические модификаторы. Теперь биологи понимают, что белок p53 участвует в таких не связанных с раком процессах, как фертильность и ранние этапы эмбрионального развития. Кстати, совершенно безграмотно пытаться понять один только белок p53. В связи с этим биологи переключились на изучение взаимодействий белка p53, как показано на рисунках с рамочками, кружочками и стрелочками, которые символически изображают его сложный лабиринт связей».

Теория взаимодействий – новая парадигма, которая пришла на смену однонаправленной линейной схеме «ген - РНК – белок». Эта схема называлась раньше «Центральной догмой» генетики. Теперь же всё выглядит неимоверно живым и энергичным, с промоутерами, блокаторами и интерактомами, цепями обратной связи, процессами прямой связи и «непостижимо сложными путями сигнальной трансдукции». «История белка p53 – это еще один пример того, как с появлением технологий геномной эры меняется понимание биологов» , - отметила Хейден. -Это расширило наши представления об известных взаимодействиях белков, и разрушило старые идеи о путях передачи сигналов, в которых такие белки, как p53, запускали в действие определенное множество нисходящих последовательностей».

Биологи допустили распространенную ошибку, посчитав, что большее количество информации принесет больше понимания. Некоторые ученые до сих пор продолжают работать по типу «снизу верх», полагая, что в основе всего лежит простота, которая рано или поздно обнаружится. «Люди привыкли всё усложнять» , - отметил один исследователь из города Беркли. В то же время другой ученый, планировавший раскрыть геном дрожжевого грибка и его взаимосвязи к 2007 г., вынужден был отложить свои планы на несколько десятилетий. Совершенно ясно, что наше понимание остается очень поверхностным. В заключение Хейден отметила: «прекрасные и загадочные структуры биологической сложности (такие как мы видим во множестве Мандельброта) показывают, насколько они далеки от разгадки» .

Но в раскрытии сложности есть и светлая сторона. Мина Бисселл, исследователь рака из национальной лаборатории Лоуренса в Беркли (Калифорния), признает: «Предсказания о том, что Проект по расшифровке генома человека поможет ученым разгадать все тайны, довел меня до отчаяния». Хейден приводит : «Известные люди заявили, что после проведения этого проекта им всё станет ясно» . Но в действительности Проект помог понять лишь то, что «Биология – сложная наука, и именно это и делает её прекрасной» .

Ссылки:

  1. Эрика Чек Хейден, «Геном человека за десять лет: жизнь очень сложная», журнал Nature 464, 664-667 (1 апреля, 2010) | doi:10.1038/464664a.

Кто прогнозировал сложность: дарвинисты или сторонники Разумного замысла? Вы уже знаете ответ на этот вопрос. Дарвинисты снова и снова показывают, что они ошибаются в этом вопросе. По их мнению, жизнь имеет простое происхождение (Маленький теплый пруд, в котором плавают мечты Дарвина). Ранее они считали, что протоплазма – простая материя, а белки – простые структуры, а генетика - простая наука (помните дарвиновские пангены?). Они верили, что перенос генетической информации и транскрипция ДНК – простые процессы (Центральная догма), а в происхождении генетического кода нет ничего сложного (мир РНК, или гипотеза «замороженного случая» Крика). Сравнительная геномика, считали они, – простой раздел генетики, который позволяет через гены проследить эволюцию жизни. Жизнь, по их мнению, – свалка мусора мутаций и естественного отбора (рудиментарные органы, мусорная ДНК). Всё просто, просто, просто. Простаки...

1000 Genomes Project — масштабный проект, запущенный в январе 2008 года, изначальной целью которого было полное секвенирование (расшифровка) геномов тысячи человек — представителей разных рас и национальностей. В работе приняли участие команды исследователей из США, Великобритании, Италии, Перу, Кении, Нигерии, Китая и Японии. Расшифровка полного генома человека — задача непростая, так как

он содержит 20-25 тыс. активных генов. Впрочем, это составляет очень незначительную часть всех генов — остальные относятся к так называемой «мусорной ДНК», то есть не кодируют никаких белков. Но с учетом «мусорной ДНК» объем генома человека достигает около 3 млрд пар нуклеотидов.

Масштабная работа, проделанная учеными, имеет непосредственное отношение ко всем живущим на планете людям. В ходе работы ученым удалось расшифровать геномы 2504 человек, представляющих 26 разных популяций. Исследователям удалось установить, какие именно вариации имеет каждый человеческий ген — а это может помочь в том, чтобы понять, за какое генетическое заболевание он отвечает. Ученым уже удалось понять,

какие именно генетические вариации ответственны за возникновение заболеваний сердечной мышцы (миокарда), хронических воспалений желудочно-кишечного тракта, серповидноклеточной анемии (нарушений строения гемоглобина) или болезни Гоше — наследственного заболевания, которое приводит к накоплению сложных жиров во многих тканях, включая селезенку, печень, почки, легкие, головной мозг и костный мозг.

Данные, полученные в результате работы, доступны на сайте самого проекта . В ночь со вторника на среду в журнале Nature вышли две статьи , представляющие последние обзорные данные, которые были получены в ходе работы. Корреспонденту отдела науки «Газеты.Ru» удалось пообщаться с тремя учеными, которые принимали непосредственное участие в расшифровке генома человека: Полом Фличеком (одним из ведущих исследователей 1000 Genomes Project и ведущим научным сотрудником Европейской молекулярно-физической лаборатории), Гонсало Абекасисом (профессором Мичиганского университета) и Адамом Отоном (Нью-йоркский медицинский колледж им. Альберта Эйнштейна) и поговорить с ними о дальнейших планах и возможности практического применения результатов семилетней работы.

— В 2008 году, когда проект только начинался, перед учеными была поставлена цель: расшифровать полный геном тысячи человек. В октябре 2012 года журнал Nature объявил о том, что окончена расшифровка 1092 геномов. На текущий момент — к окончанию проекта — вам удалось секвенировать 2504 генома. Скажите, как вам удалось так существенно перевыполнить план?

Пол Фличек: Нам удалось секвенировать так много образцов, потому что за последние годы технологии, позволяющие осуществлять секвенирование генома, получили существенное развитие. Именно поэтому нам удалось получить примерно в 25 раз больше данных, чем было заявлено изначально.

Гонсало Абекасис: Не стоит забывать и о стоимости подобного анализа. Если в 2008 году полная расшифровка генома человека стоила около $100 тыс., то теперь эта сумма составляет менее $2 тыс.

— 30 сентября было объявлено о том, что финальная стадия проекта завершена. Можно ли говорить о полном завершении работ или же вы собираетесь идти дальше и ставить перед собой новые цели?

Пол Фличек: Перед нами стоит множество новых целей, касающихся как секвенирования ДНК, так и поиска взаимосвязей между вариациями разных генов, возникновения генетических заболеваний и других характеристик человека. Завершение 1000 Genomes Project — это действительно кульминация усилий, которые мы начали предпринимать еще 15 лет назад и целью которых было создание открытого ресурса, содержащего информацию о человеческих генах.

В будущем мы планируем расширить базу наших исследований и привлечь к нему людей, представляющих большее число популяций из разных стран мира, — в Африке, Азии и на Среднем Востоке остаются популяции, не вовлеченные в исследование. Теперь эта работа будет проводиться в рамках проекта .

Гонсало Абекасис: Кроме того, в дальнейшем мы планируем фокусироваться на том, как вариации каждого гена влияют на течение конкретной болезни. Для этого нужно изучить как можно большее число случаев течения и лечения подобных заболеваний.

Адам Отон: А еще мы собираемся проверить, как генетические вариации влияют на фенотип человека.

— А можно ли применять полученную вами информацию на практике уже сейчас? Или все-таки еще требуется дополнительное время на обработку данных?

Гонсало Абекасис: Собранная нами информация полезна для исследователей уже сейчас — она помогает ученым понять, сколько вариаций имеет каждый ген, какие из этих вариаций несут ответственность за возникновение разных заболеваний. Правда, до того момента, когда эти знания приведут к разработке новых лекарств, еще пройдет определенное время.

Адам Отон: Информация активно используется, и не только врачами, а вообще всеми желающими. Если исследователь — из любой сферы — хочет узнать, какие функции выполняет какой-либо ген, как он распространен среди населения земного шара или как выглядит какой-то участок генома, он может с легкостью получить эту информацию.

Пол Фличек: Я считаю, основная практическая польза полученных нами данных — это то, что они помогают составить карту распространения какого-то гена на планете.

Допустим, у человека родом из Азии обнаружили редкое генетическое заболевание. Но данные нашего проекта говорят, что вариация какого-то гена (вызывающего это заболевание) есть только в ДНК африканцев. Это будет означать, что корни заболевания надо искать в изменениях другого гена. Кроме того, мы стали лучше понимать, как разные популяции людей мигрировали по миру.

— Если бы вас попросили описать результаты семилетней работы в одном-двух предложениях, что бы вы сказали?

Пол Фличек: Важнейший результат 1000 Genomes Рroject — это составление каталога вариаций человеческих генов и анализ методов и инструментов, которые могут быть использованы для дальнейшего секвенирования генома человека. Этот каталог полностью бесплатен и находится в открытом доступе.

Гонсало Абекасис: Теперь у нас есть каталог, где представлены разные версии каждой последовательности ДНК, а значит, каждого гена, и с помощью которого мы можем определить, в каких регионах планеты распространена каждая версия. Мы можем использовать эту информацию, чтобы сократить время и затраты, необходимые на расшифровку генома других людей.

Адам Отон: 1000 Genomes Project самым существенным образом улучшил наше понимание того, как вариации человеческих генов распространены в мире.

— И последний вопрос: что вы чувствуете сейчас, когда семилетний проект, в котором вы принимали самое непосредственное участие, завершен?

Гонсало Абекасис: Я чувствую, что пришло время принять следующий вызов: применить то, что мы узнали, на практике и начать разрабатывать методы лечения генетических заболеваний.

Адам Оттон: Проект стал базой для дальнейшей работы: все хотят знать, что вариации генов могут рассказать нам о различных заболеваниях. Несколько следующих лет обещают быть очень насыщенными.

Пол Фличек: Мне немного грустно. Наш проект был яркой демонстрацией того, на что способны современные технологии. Проект постоянно рос и развивался — вместе с развитием технологий, а его завершение действительно означает конец целой эпохи. Хотя, само собой, использование данных, полученных при расшифровке ДНК, еще только начинается, и мне кажется, что 1000 Genomes Project можно сравнить с ребенком, которому еще расти и расти.

Ученые, работавшие над расшифровкой последовательности генетического кода человека, заявили, что завершили свой труд на два года раньше запланированного срока. Это объявление последовало менее чем через три года после опубликования в мировой прессе "черновика" генома. В июне 2000 года премьер-министр Великобритании Тони Блэр и тогдашний президент США Билл Клинтон заявили, что расшифровано 97% "книги жизни".

Как сообщает Би-Би-Си , сейчас последовательность ДНК человека раскодирована практически на 100%. При этом остаются небольшие пробелы, заполнение которых считается слишком дорогостоящим, но система, способная делать из генетических данных медицинские и научные выводы, уже хорошо отработана. Институт Сэнгера, единственное британское учреждение, участвующее в масштабном международном проекте, выполнил почти треть всего объема работ. Большего вклада в расшифровку генома не сделал ни один научный институт в мире.

Не менее значительная доля работы по раскодированию легла на плечи американских ученых. Доктор Фрэнсис Коллинс, директор Национального института исследований генома США, также указывает на долгосрочные перспективы. "Один из наших проектов предусматривал идентификацию генов предрасположенности к диабету II типа, - говорит он. - Этим заболеванием страдает каждый 20-й человек старше 45 лет, и эта доля со временем только возрастает. При помощи общедоступной карты генетических последовательностей мы сумели отобрать один ген в хромосоме 20, наличие которого в геноме, похоже, как раз и увеличивает вероятность возникновения диабета II типа".

Когда о проекте расшифровки генома человека было официально объявлено, некоторые специалисты утверждали, что на его реализацию потребуется лет 20 или даже больше. Но ход выполнения работ невероятно ускорили появление роботов-манипуляторов и суперкомпьютеров. Подстегнула деятельность ученых в этом направлении и информация о том, что параллельно геном человека расшифровывает и частно финансируемая компания Celera Genomics. В последние три года основной целью биологов было заполнение брешей, остававшихся в уже раскодированных последовательностях ДНК, и более детальное уточнение всех остальных данных, на основе которых можно было бы выработать "золотой стандарт", который лег бы в основу дальнейших разработок в этой области. Зная практически всю последовательность почти трех миллиардов букв-нуклеотидов генетического кода нашей ДНК, ученые смогут вплотную заняться теми проблемами жизни человека, которые вызываются генетическими причинами.

Работа по идентификации генов теперь может длиться дни, а не годы, как раньше. Но главная задача практической медицины заключается теперь в том, чтобы знание о том, какие именно гены работают неправильно или вызывают определенные нарушения, трансформировать в знание того, что с этим можно сделать. А для этого им понадобится лучше понять, как, строя и поддерживая наше тело, взаимодействуют между собой белки (они же протеины) - сложные молекулы, построенные по генетическим "шаблонам" ДНК.

Понравилась статья? Поделитесь ей
Наверх