Магнитная антенна (рамка) на КВ диапазоны. Селекция магнитной рамочной антенны Магнитная рамочная антенна 27 мгц

При упоминании магнитной антенны как-то сразу приходят с голову те, что на ферритовом стержне, и это отчасти правильно. Все это разновидности одного и того же типа устройств. Магнитной называется рамочная антенна, периметр которой много меньше длины волны. Всем известные зигзаг и биквадрат (почти одно и то же) также являются родственниками рассматриваемой технологии. И совсем к ним никакого отношения не имеют антенны на магнитном основании. Это просто способ крепления не более того. Магнитное основание для антенны надежно удерживает ее на крыше любого авто. Мы же говорим сегодня об особой конструкции. Вся прелесть магнитных антенн в том, что удается обеспечить сравнительно большое усиление на сравнительно длинных волнах. При этом размер магнитной антенны достаточно мал. Давайте обсудим наше заглавие и расскажем, как может быть сделана магнитная антенна своими руками.

Магнитные антенны

Из теории известно, что в колебательном контуре из катушки индуктивности и конденсатора излучения почти что не происходит. Оно все замкнуто, и волна может качаться на резонансной частоте сколь угодно долго, затухая, ввиду наличия активного сопротивления. Да, элементы контура, индуктивность и емкость, в общем-то имеют чисто реактивный (мнимый) импеданс. Причем размер зависит от частоты по довольно незамысловатому закону. Это нечто вроде произведения круговой частоты (2 П f) на значение индуктивности или емкости, соответственно. И вот при некотором значении противоположные по знаку мнимые компоненты становятся равны. В результате импеданс становится чисто активным, в идеале он равен нулю.

В действительности биения все же затухают, потому что каждый контур на практике характеризуется добротностью. Напомним, что импеданс состоит из чисто активной (действительной) части, как например, резисторы, и мнимой. К последним относятся емкости, сопротивление которых мнимое отрицательное и индуктивности с положительным мнимым сопротивлением. Теперь представим, что в контуре обкладки конденсатора начали разводить до тех пор, пока они не оказались на противоположных концах индуктивности. Это называется вибратором (диполем) Герца, и представляет собой разновидность укороченного полуволнового и прочих видов вибраторов.

Если же взять и превратить катушку в единое кольцо, то мы получаем простейшую магнитную антенну. Это очень упрощенное толкование, но примерно так оно и есть. Причем сигнал снимается с противоположной от конденсатора стороны через усилитель на полевых транзисторах. Это обеспечивает высокую чувствительность устройства. Ну, а антенна на ферритовом стержне является разновидностью магнитной, только у нее колец множество вместо одного. Свое название этот род устройств получил за высокую чувствительность именно к магнитной составляющий волны. В частности, при работе на передачу генерируется как раз она, порождая отклик электрического поля.

Максимум направленности соответствует оси стержня. Причем оба направления равноправны. Ввиду малого периметра рамочной антенны относительно длины волны сопротивление ее достаточно низкое. Это может быть не просто 1 Ом, но даже и доли Ома. Приближенно значение можно оценить по формуле:

R = 197 (U / λ) 4 Ом.

Под U понимается периметр в метрах, в тех же единицах, что и длина волны λ. Наконец, R - сопротивление излучению, не нужно путать его с активным, которое показывает тестер. Этот параметр используется при расчете усилителя для согласования нагрузки. Следовательно, для ферритовых антенн, нужно это значение помножить еще на квадрат числа витков.

Свойства магнитных антенн

А теперь посмотрим, как сделать магнитную антенну самостоятельно. Для начала следует определить длину окружности и емкость подстроечного конденсатора. Вообще-то особенности магнитной антенны таковы, что она требует согласования в обязательном порядке, но об этом как-нибудь в другой раз. Дело в том, что отличительным признаком является невероятное число вариантов проведения этой операции, так что вырисовывается отдельная тема для разговора.

Длина периметра магнитной антенны колеблется в пределах от 0,123 до 0,246 λ. Если требуется перекрыть весь этот диапазон, то нужно правильно подобрать конденсатор. В свободном пространстве и магнитной антенны диаграмма направленности в виде тора, что и можно наблюдать, расположив виток параллельно земле. Поляризация при этом будет линейная горизонтальная. То есть это отличный вариант для приема телевещания. Недостаток в том, что угол возвышения лепестка зависит от высоты подвеса. Считается, что для расстояния до Земли λ он составит 14 градусов. И это непостоянство является отрицательным качеством. А вот для радио магнитные антенны применяются достаточно часто.

Усиление составляет 1,76 дБи, что на 0,39 меньше, чем у полуволнового вибратора. Но размер последнего для этой частоты составит десятки метров - ну, куда денешь такую громадину? Выводы делайте сами. Наша магнитная антенна не так уж и велика (периметр может составлять 2 метра для длины волны 20 метров, это меньше метра в поперечнике). Для сравнения на частоте 34 МГц, с которой хорошо знакомы дальнобойщики, благодаря рациям, длина волны составляет 8,8 метра. При этом каждый знает, что хороший полуволновый вибратор вместит не каждый Камаз. И, кстати, ранее мы приводили уже описание конструкции рамочной антенны, образуемой резиновой прокладкой заднего стекла легкового автомобиля ВАЗ. При всех ее малых габаритах работало устройство достаточно хорошо.

Кстати, такая конструкция считается более прагматичной, нежели типичные штыревые антенны для авто, где настройка ведется изменением индуктивности. Потерь получается меньше. Кроме того диаграмма направленности охватывает достаточно высокие углы места, почти до вертикали. В случае со штыревой антенной этой возможности не имеется.

Но как же правильно выбрать длину окружности? С ее увеличением растет усиление. То есть она должна удовлетворять условию, приведенному выше, и быть по возможности больше. При этом не стоит забывать, что иногда нужно перекрыть несколько частот. Кроме того с ростом периметра увеличивается полоса пропускания устройства. Нужно сказать, при ширине типичного канала в 10 кГц это не так важно. Кроме того будут автоматически отсекаться соседние несущие станций вещания. В этом смысле больше вовсе не обязательно значит лучше. Не забывайте однако, что ради усиления и затевался весь сыр-бор. Таким образом, антенна выбирается по периметру максимальной с обеспечением нужной избирательности.

Теперь главный вопрос: как определить емкость? Так, чтобы вместе с индуктивностью петли они образовали резонанс по известной формуле. Что касается определения параметров контура, то для него дана такая формула:

L = 2U (ln(U/d) - 1,07) нГн;

где U и d - длина витка и его диаметр. В чем здесь подвох? U = П d, следовательно, вместо их отношения можно было бы брать натуральный логарифм числа Пи. Ошибка ли это автора, сказать не беремся. Быть может, учитывается тот факт, что настроечный конденсатор отнимает часть длины, а также и усилитель… Емкость же находим по известной индуктивности из выражения для резонанса контура:

f = 1/ 2П √LC; откуда

С = 1/ 4П 2 L f 2 .

При упоминании магнитной антенны сразу наполняют память конструкции на ферритовом стержне, отчасти правильно. Разновидности одного типа устройств. Магнитной называется рамочная антенна, периметр которой много меньше длины волны. Всем известные зигзаги, биквадрат (слова-синонимы) являются родственниками рассматриваемой технологии. Никакого отношения не имеют антенны на магнитном основании. Просто способ крепления. Магнитное основание для антенны надежно удерживает прибор на крыше авто. Поговорим сегодня об особой конструкции. Прелесть магнитных антенн: удается обеспечить сравнительно большое усиление на сравнительно длинных волнах. Размер магнитной антенны мал. Давайте обсудим заглавие, расскажем, как может быть сделана магнитная антенна своими руками.

Магнитная петлевая антенна

Магнитные антенны

Теория гласит: в колебательном контуре из катушки индуктивности, конденсатора излучения не происходит. Замкнуто, волна качается на резонансной частоте сколь угодно, затухая, ввиду наличия активного сопротивления. Элементы контура, индуктивность, емкость, имеют чисто реактивный (мнимый) импеданс. Причем размер зависит от частоты по незамысловатому закону. Нечто вроде произведения круговой частоты (2 П f) на значение индуктивности или емкости, соответственно. При некотором значении противоположные по знаку мнимые компоненты становятся равны. В результате импеданс становится чисто активным, в идеале равен нулю.

В действительности биения затухают, каждый контур на практике характеризуется добротностью. Напомним, что импеданс состоит из чисто активной (действительной) части (резисторы), мнимой. К последним относятся емкости, сопротивление которых мнимое отрицательное и индуктивности с положительным мнимым сопротивлением. Теперь представим, что в контуре обкладки конденсатора начали разводить до тех пор, пока не оказались на противоположных концах индуктивности. Называется вибратором (диполем) Герца, представляет собой разновидность укороченного полуволнового, прочих видов вибраторов.

Если превратить катушку в единое кольцо, получаем простейшую магнитную антенну. Упрощенное толкование, примерно верное. Сигнал снимается с противоположной конденсатора стороны через усилитель на полевых транзисторах. Предоставит высокую чувствительность устройства. Ну, а антенна на ферритовом стержне считают разновидностью магнитной, только колец заместо одного сонм. Название этот род устройств получил за высокую чувствительность к магнитной составляющий волны. При работе на передачу генерируется, порождая отклик электрического поля.

Максимум направленности соответствует оси стержня. Оба направления равноправны. Ввиду малого периметра рамочной антенны относительно длины волны сопротивление достаточно низкое. Не просто 1 Ом, доли Ома. Приближенно значение оценим формулой:

R = 197 (U / λ) 4 Ом.

Под U понимается периметр в метрах, аналогично – длина волны λ. Наконец, R – сопротивление излучению, не путайте с активным, показываемым тестером. Параметр используется при расчете усилителя для согласования нагрузки. Следовательно, для ферритовых антенн, нужно значение помножить на квадрат числа витков.

Свойства магнитных антенн

Посмотрим, как сделать магнитную антенну самостоятельно. Вначале определите длину окружности и емкость подстроечного конденсатора. Особенности магнитной антенны таковы: конструкция требует согласования в обязательном порядке. Отличительным признаком является невероятное число вариантов проведения этой операции, вырисовывается отдельная тема разговора.

Длина периметра магнитной антенны колеблется в пределах 0,123 – 0,246 λ. Если требуется перекрыть диапазон, то нужно правильно подобрать конденсатор. В свободном пространстве, магнитной антенны диаграмма направленности в виде тора, наблюдаем, расположив виток параллельно земле. Поляризация будет линейная горизонтальная. Это годный вариант для приема телевещания. Недостаток: угол возвышения лепестка зависит от высоты подвеса. Считается, что для расстояния до Земли λ цифра составит 14 градусов. Непостоянство считаем отрицательным качеством. Для радио магнитные антенны применяются часто.

Усиление составляет 1,76 дБи, на 0,39 меньше полуволнового вибратора. Размер последнего для частоты составит десятки метров – куда денешь громадину. Выводы делайте сами. Магнитная антенна невелика (периметр составляет 2 метра для длины волны 20 метров, меньше метра поперечником). Для сравнения на частоте 34 МГц, с которой хорошо знакомы дальнобойщики, благодаря рациям, длина волны составляет 8,8 метра. Известно: хороший полуволновый вибратор вместит редкий Камаз. Кстати, ранее приводили описание конструкции рамочной антенны, образуемой резиновой прокладкой заднего стекла легкового автомобиля ВАЗ. При малых габаритах работало устройство достаточно хорошо.

Кстати, конструкция считается прагматичнее, нежели типичные штыревые антенны авто, где настройка ведется изменением индуктивности. Потерь получается меньше. Диаграмма направленности охватывает высокие углы места, касаясь вертикали. В случае со штыревой антенной возможности нет.

Как правильно выбрать длину окружности. С увеличением растет усиление. Должна удовлетворить условию, приведенному выше, быть по возможности больше. Иногда нужно перекрыть диапазон частот. Рост периметра увеличивает полосу пропускания устройства. При ширине типичного канала 10 кГц теряет смысл. Будут автоматически отсекаться соседние несущие станций вещания. Необязательно больше значит лучше. Ради усиления затевался сыр-бор. Антенна выбирается периметром максимальная, предоставляя требуемую избирательность.

Теперь главный вопрос: определить емкость. Чтобы параллельно индуктивности петли образовали резонанс по известной школьной формуле. Определение параметров контура согласно выражению:

L = 2U (ln(U/d) – 1,07) нГн;

U и d – длина витка, диаметр. Подвох. U = П d, следовательно, вместо отношения можно брать натуральный логарифм числа Пи. Ошибка ли автора, сказать не беремся. Быть может, учитывается факт, что настроечный конденсатор отнимает часть длины, усилитель… Емкость находим по индуктивности из выражения резонанса контура:

f = 1/ 2П √LC; откуда

С = 1/ 4П 2 L f 2 .

С = 25330 / f 2 L,

где f - частота резонанса в МГц, а L – индуктивность в мкГн.

Антенна приемника

Что касается способа снятия сигнала, то это делаем со стороны подстроечного конденсатора по обоим бокам, либо с противоположной стороны круговой петли. В последнем случае рекомендуется ввести управление конденсатором при помощи серводвигателя на расстоянии, полагаем, большинству читателей это покажется сильно надуманным, на свете не так много радиолюбителей, уверенных в нужности изготовленной собственноручно магнитной антенны.

Какие бывают магнитные антенны

Не всегда магнитные антенны круглые (идеальная форма). Встречаются восьмиугольные, квадратные. Читатели догадались: биквадрат WiFi относится к последней категории, причем рамка сдвоенная. Бывает, больше контуров, увеличивает усиление в одной плоскости диаграммы направленности. Учитывая факт, что КПД антенны вычисляется формулой:

КПД = 1 / (1 + Rп/R),

Видим необходимость снижения сопротивления потерь Rп до минимума. В противном случае результативность устройства резко падает. На практике мало значит, сделать антенны из золота, серебра, чтобы ловить НТВ, нереально. В названном аспекте пойдут алюминий, медь, предпочтительна последняя. Для магнитных антенн подходит конденсатор с воздушным зазором, большими пластинами. Старайтесь качественно выполнить пайку выводов.

Пример. Длина периметра составляет одну десятую λ, следовательно, сопротивление излучения составит 0,02. Теперь читатели видят, как сильно придётся постараться, чтобы довести КПД до 50%. Сопротивление потерь в этом случае не превышает 0,02 Ом. Чтобы достичь такого результата, берите толстую медную жилу. С увеличением сечения проводника падает удельное сопротивление.

У контура высокая добротность (низкие потери), получается, напряжение резонанса много выше, нежели при отклонении частоты. Следовательно, полоса пропускания магнитной антенны не отличается большой шириной, потребуется устройство подстраивать. Делается при помощи конденсатора. Надеемся, что ответили на вопрос, как сделать магнитную антенну. Отыграйте подачу: удивите домашних уверенным приемом сигнала в любую погоду.

За долгую радиолюбительскую жизнь бывал не на одном общественном радиомероприятии. И на хамфестах, и просто на шашлыках радиолюбителей. Как правило хорошим фоном к разговору является бубунящий тихонько в SSB или телеграфе приёмник. Если, конечно, вообще шашлык не занял рот, руки и мозги:-) Свободны только уши:-) На одном и увидел вот это. По моей просьбе автор описал конструкцию.
Валентин Побережник, UR5RGG
"Антенна применяется с приёмником TECSUN PL-600. Питание берётся с приёмника (в антенном гнезде есть свободный контакт). Обе схемы равнозначны по усилению, вторая позволяет его регулировку. Как гласит теория, на HЧ диапазонах рамки с большим количеством витков или размером эффективнее. Транзисторы использовались из наличного. Практически любой аналог будет работать так же хорошо. Ничего нового в этих схемах нет. Пробовал и симметричные схемы на 2-х транзисторах. Заметного выигрыша не заметил 1 , зато появились трудности с узлом вращения рамки антенны (или тогда вращать с корпусом усилителя и кабелем 2). Для вращения рамки относительно корпуса применены разъёмы, тройники и делители СР-50. В зависимости от желания исполнителя можно сделать два варианта."



P.S. UY2RA
1. Выигрыш от применения балансного (дифференциального) входа оценить могут жители городских кварталов. И дело не в усилении, вот почему - "No QRM magnetic loop " На природе помех почти нет, поэтому и незаметно:-).
2. Проблемы с узлом передачи от подвижной рамки к неподвижному корпусу действительно есть. Но есть и решение. Причем если есть денежки, то можно от этого еще и выиграть - nLogis RF-PRO-1B Active


Таким образом при желании можно получить не только антенну для походов и шашлыков, а вполне исправно работающую и "на больших трансиверах" вторую или специальную антенну. Упомянутый вариант с выносом вверх и вращением можно использовать инфракрасное управление или прямиком "заавтоматить" настройку выходного каскада через микроконтроллер Ардуино, слава богу стоит он копейки. Надо только иметь выход КСВ метра в трансивере.

А если больше доверяете механике - вот еще одно решение - верёвочное:-) Кстати, у нас в области есть радиолюбители, работающие на предприятиях, которые могли бы что-нибудь из этого выпускать. Беру на себя роль интернет-магазина:-)

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

Ну вот мы уже провели не один десяток связей через летающие спутники и МКС в CW, SSB, RTTY и даже SSTV моде. И, как обычно это бывает, стали подумывать: а не "дотянуться" ли нам до какого-нибудь DX? Поэтому разбираться будем на примере попытки "достать" Японию. Первым делом вспомним события последних дней: будучи неудовлетворенными качеством связи, мы прикупили (или сделали сами) устройство управления антеннами в горизонтальной плоскости (хотя бы) и усовершенствовали своё антенное хозяйство хотя бы до 5/9 эл. Yagi на 145/435 мгц. Т.е. привели свою техническое состояние до "среднеобнадеживающего".

Как и прежде, наш надежный помощник компьютер и вложенный в него интеллект Sebastian Stoff - Orbitron, поможет нам выбрать спутник и время для попытки. Просматривая данные орбит спутников, ищем максимально высоко летающий спутник (апогей-перигей). На сегодня это АО-7 с данными а/п 1440х1459 км. Т.е.диаметр круга радиовидимости на Земле самый широкий. Второй спутник, через который можно попробовать - JAS-2 (FO-29) с апогеем 1322 км. Далее используя симуляцию движения АО-7 по орбитам, находим орбиту и время, на которой спутник займет место посредине между нами и Японией. Лучше это делать в не меркатор проэкции, а в азимутальной, как на нашем рисунке. Сразу же отбраковываем орбиты, приходяшиеся на то время, когда в Японии ночь. Вряд ли наши CQ-JA будут кем-то услышаны в Японии глухой ночью.
После этого в параметрах расчета проверяем каков угол места для спутника в этот момент. предварительно, для расчета, мы опустили эту планку до уровня 3 градуса. Если ваши антенны подняты высоко над землей, и ваш QTH расположен высоко над уровнем моря (например у меня всего 138 метров), то вы можете попробовать и меньшее значение, но среднестатистическому украинцу лучше этого не делать. Hi Теоретически, можно задать угол места даже отрицательным, связь возможна, но на практике вероятность тоже приближается к отрицательному диапазону...Хи Таким образом, как говорил Ходжа Насреддин, если звезды расположатся соответствующим образом, мы можем повернуть антенны в нужную сторону, в нашем случае это 54 градуса, и с трепетом ожидаем магических 2-3 минут расписания, на протяжении которых возможна связь. При определенном везении и настойчивости связи происходят. И часто. Посмотрите сами лог Оскара и убедитесь, что каждые сутки происходит десятка три-четыре межконтинентальных связей через этот спутник. Если получается у них, почему не выйдет у нас? Теперь мы хотим провести QSO с американским континентом. Методика уже отработана, как говоря, терпение и труд всё перетрут. Поэтому желаю успеха. Попробуйте.

  • EN5R Islands Activity

    EN5R Islands Activity: UIA award













  • 26 апреля 1986 года

    Я думаю говорить много не следует. Все всё помнят. Сейчас саркофаг накрывают новой крышей - конфайнментом.

    Но из песни слов не выбросишь. наши Славутичские радиолюбители 25 лет спустя работали из города-призрака в эфире. Короткий отчёт с несколькими фотографиями на сайте Гоши радиста .

  • Space sound

    Скажите, кто-бы отказался от такой антенной системы? Я - точно нет. Недаром ведь говорится что результаты радиолюбителя зависят больше не от его талантов, а от того, сколько сил и средств вложено в первую очередь в антенны, оборудование и аксессуары типа компьютеров, интерфейсов и проч. Наши скромные радиолюбительские результаты ни в какое сравнение не идут с возможностями таких вот конструкций. Она скорее всего более подходит для обнаружения сигналов внеземных цивилизаций чем для работы через FunCub1, фонограмма которого ниже. К сожалению, фонограмму сигнала ВЗЦ приложить не могу. Не имею:-) Да сегодня никто не имеет. Я начал читать книгу

  • УКВ тестеры

    Так вот, я думаю что у всех есть трансивер с диапазоном 29350-29500 кгц. Тогда там, сообразуясь со свободным временем, можно послушать в CW и SSB модах работу радиолюбителей через спутник АО-7. В дополнительных материалах (ссылку смотри выше) есть рассказ о программе, с помощью которой можно просчитать когда именно слушать - программе "Орбитрон". Она же поможет уточнить время "прибытия" МКС. К сожалению, самый популярный спутник, через который проведены миллионы связей в FM - Echo или АО-51, на сегодняшний день не функционирует. Но, к сожалению, он не единственный среди замолчавших. Из того, что сегодня доступно, имея только диапазон 145 мгц, всё. Два пути вперед. Первый - улучшить антенную технику или поставить усилитель для того чтобы лучше слышать. Он не будет помехой для второго:-) Второй - изобретать или покупать чего-нибудь с несколькими УКВ диапазонами, а может и модами. Но, пока думаем, можно пытаться реализовать движение по первому пути. Первая попытка улучшить приём - "приподнять" сигнал над шумами.
    - по широте - 10 градусов (1114,28 км);
    - по долготе - 20 градусов (1560 км).
    В свою очередь каждый такой сектор разбит еще на 100 больших квадратов которые обозначаются двумя ЦИФРАМИ и имеют следующие размерами:
    - по широте - 1 градус (78 км);
    - по долготе - 2 градуса (111,42 км). Kаждый большой квадрат разделен на 576 малых квадрата, эти малые квадраты обозначаются двумя МАЛЕНЬКИМИ буквами латинского алфавита и имеют следующие размерами:
    - по широте - 2,5 минуты (4,64 км);
    - по долготе - 5 минут (6,5 км).
    8-ми значный квадрат типа KO51bm33 определит расположение в пределах прямоугольника 400 на 800 метров, а 10-ти значный - внутри прямоугольника 40 на 80 метров.

  • Три трансивера на 1 антенну

    Все мы в той или иной степени путешественники. Правда часть из нас путешественники фанатичные. Особенно это можно сказать про радиолюбителей. Все знают программу URFF, программу UIA знают многие, но не все. Еще меньше народа знает про программу, например, маяков. Но если летом предложить какому-нибудь домоседу поехать в радиоэкспедицию на остров и быть востребованным больше чем обычно (почти пайлап:-), то думаю он согласится. Я сам очень люблю природу, а когда можно соединить в одно время отдых на природе и за трансивером - я просто счастлив. При этом забываешь сколько потрачено сил на перетаскивание тяжестей, ), денег на бензин и нервов на борьбу с пограничниками... (Дело в том, что все наши острова - на Днепре, на границе. И на реке командуют пограничники).

  • Опубліковано: 31 березня 2016

    Часть первая. Я уже 5 лет работаю в эфире только на магнитную антенну. Причин этому было несколько: главная та, что нет места для того, чтобы натянуть хоть какую-нибудь “веревку”, а следующее – это то, что я понял - “правильная ”Магнитная рамка" далеко не хуже, а то и, во многих случаях, даже лучше любой проволочной антенны. Когда, еще в Харькове я экспериментировал с магнитной рамкой, у меня было недоверие к этой антенне, хотя еще там на "магнитку" я принимал лучше, чем на полноразмерную "дельту" на диапазоне 160 м. Я тогда сделал тоже много ошибок, о чём и сам не знал.

    Тогда у меня была полноразмерная вертикальная "дельта" на 160 метров, растянутая между двумя 16-ти этажками. Я, в основном, работал на 160 м. Как-то занялся и сделал, на скорую руку, приемную магнитную антенну на этот диапазон. При испытании днем, в квартире на 8-м этаже в железобетонном доме, уверенно принимал станцию, находящуюся в 110 км от Харькова, в то время как на дельту я слышал только присутствие станции и ни одного слова принять не мог. Я был поражен, но вечером, когда все пришли с работы и включили телевизоры, я на магнитную рамку ничего вообще не слышал, сплошное жужжание. На этом мой первый опыт и был закончен.

    И вот уже здесь, в Торонто, мне снова пришлось заняться магнитными антеннами, но теперь уже и передающими. Сначала у меня на балконе был диполь на 20 м. Европа на 20 м отвечала, но слабовато. Только те, у кого "Яги" или штырь. А когда поставил "Магнитку", то начали отвечать сразу и не только те, что с "Ягами". Пошли связи со станциями, у которых и диполи и "инвертеры" и "веревки". Потом я диполь переделал в дельту. Получился периметр 12.5 м, поставил удлиняющую катушку в 50 см от горячего конца дельты. Теперь дельта стала строиться тюнером от 80 м до 10м. По шумам дельта намного тише диполя, но с "магниткой" сравнивать трудно. Бывают случаи, когда "магнитка" берет больше шумов, а бывает и наоборот. Это зависит от источников шума. Есть связи с Европой и на дельту, но отвечают намного хуже. Магнитка все-таки выигрывает. Я где-то читал, что вертикально расположенная магнитка имеет угол излучения к горизонту ниже 30 градусов.

    Моя первая антенна таких размеров: наружный диаметр её трубы - 27 мм (дюймовая медная труба), диаметр антенны по углам - 126 см, диаметр антенны по серединам противоположных сторон - 116 см (Замерялось по оси трубы). Уголки (135 градусов) - тоже медные. Все пропаяно. Вверху антенны есть разрез по середине стороны трубы, зазор около 2,5 см. Верху антенны в пластиковой коробке конденсатор переменной ёмкости - "бабочка" с двигателем постоянного тока и редуктором. Статорные пластины припаяны к медным полосам, которые, в свою очередь, припаяны к трубе по разные стороны зазора, ротор не задействован (токосъемов быть не должно). Емкость переменного конденсатора 7 - 19 пф. Зазор между пластинами - 4-5 мм. Этой емкости хватает, чтобы настраивать антенну на диапазонах 24 МГц и 21 МГц. На 18 МГц нужна дополнительная емкость 13 пФ, на 14 МГц - 30 пФ, на 10 МГц - 70 пФ, на 7 МГц - 160 пФ. Для этих емкостей по краям разреза трубы впаяны зажимы (видно на фото), которыми плотно прижимаются выводы дополнительных конденсаторов (чем плотнее, тем лучше). Такие меры предосторожности нужны при передаче. При 100 Вт, в режиме передачи, на обкладках конденсатора напряжение достигает 5000 вольт, а ток в антенне - до 100 А. Диаметр петли связи 1/5 диаметра антенны. Петля связи (петля Фарадея) изготовлена из кабеля, с антенной контакта нет. Питание антенны - 50-омным кабелем произвольной длины.

    Но потом я поменял место жительства и, на новом QTH, эта антенна оказалась слишком большой. Балкон имеет металлическое ограждение, и, поэтому, внутри балкона был слабый прием. Нужно было выносить антенну за пределы балкона и я сделал следующую магнитную рамку.

    Её рамка изготовлена из медной трубы диаметром 22 мм, диаметр антенны – 85 см. Работает от 14 до 28 МГц. По расчетам для таких антенн, эта рамка должна работать немного хуже предыдущей, потому что и труба тоньше, и диаметр рамки меньше, но практическое использование показало, что вторая антенна ничем не уступает большей рамке. И мое заключение - цельная труба все-таки лучше, чем спаянная из нескольких кусков. При огромных токах малейшее сопротивление на переходах медь–олово и наоборот, а также на зажимах дополнительных конденсаторов, дает большие потери. При приеме это неощутимо, а вот при передаче идет потеря мощности.

    Я работаю в цифровых видах, в основном в JT65. На меньшую антенну на 28 МГц на 5 ваттах работал с Австралией (15000- 16000км), ЮАР (13300 км через мой дом). Потом я переделал первую рамку, в которой вместо конденсатора "бабочка" поставил вакуумный конденсатор.

    И, к моему удивлению, антенна стала строиться на 28 МГц и у меня добавился диапазон 10 МГц. Хотя на этом диапазоне, по расчетам, эффективность составляет 51%, я на 20 ваттах в JT65 спокойно проводил связи с Европой. Переделка была сделана буквально 2-3 недели назад, поэтому полная картина ещё у меня не сложилась. Но ясно одно, - антенны работают. Управляю перестройкой конденсатора дистанционно, со своего рабочего места. Настройка быстрая, попадаю в резонанс с первого, максимум - со второго раза, т.е. больших неудобств при перестройке не испытываю. А при работе цифровыми видами перестраиваться по диапазону вообще не приходится.

    Xочу сформулировать несколько важных критериев, которые надо учитывать при построении эффективной передающей магнитной антенны. Может, кому-то мой опыт поможет и человек не будет тратить много времени и средств, как я, тем более, что при неправильном подходе к построению магнитной рамки, может пропасть интерес к такого типа антеннам, - по себе знаю это. Но, правильно сделанная антенна, действительно работает хорошо. Подчеркиваю, что это только мои соображения, которые основываются на моем личном опыте в построении и использовании магнитных рамок. Если у кого будут какие-то замечания или дополнения или вопросы, прошу писать мне на Е-Mail.

    1. Полотно антенны должно быть цельным.

    2. Материал – медь или алюминий, но алюминий дает потери при передаче, около 10% больше при одинаковых размерах, чем медь (по данным различных программ для расчета магнитных антенн).

    3. Форма антенны - лучше круглая.

    4. Площадь полотна антенны должна быть как можно большей. Если это труба, то диаметр трубы должен быть как можно большим (как следствие, наружная площадь трубы будет большей), если же это - полоса, то ширина полосы должна быть как можно большей.

    5. Полотно антенны (труба или полоса) должны подходить непосредственно к переменному конденсатору без каких-либо промежуточных вставок из проводов или полос, припаянных к полотну антенны и к конденсатору. Другими словами нужно избегать паек и "скруток" в полотне антенны, где только это только возможно. Если же необходимо что-то припаять, то лучше использовать сварку, для меди это - медную сварку, для алюминия – алюминиевую, чтобы избежать неоднородностей металла в полотне антенны.

    6. Полотно антенны должно быть жестким, чтобы не было деформации, например от ветровых нагрузок.

    7. Конденсатор должен быть с воздушным диэлектриком и с большим зазором между пластинами, еще лучше - вакуумный.

    8. Конденсатор с электродвигателем у меня закрыты в пластмассовую коробку. Внизу коробки сделаны два небольших отверстия для слива конденсата.

    9. Токосъемов на конденсаторе быть не должно, поэтому нужно использовать конденсатор типа "бабочка" у которого статорные пластины подключены к разным концам полотна антенны, а ротор ни к чему не подключен.

    10. Петля связи имеет диаметр 1:5 от диаметра антенны, Надо учесть, что при уменьшении диаметра петли связи увеличивается добротность антенны, а значит и её эффективность, однако, сужается полоса пропускания антенны. В интернете находил информацию, что можно использовать петлю связи диаметром от 1:5 до 1:10 от диаметру рамки антенны. Я использую петлю Фарадея в качестве петли связи. Гамма согласование не использовал. Для петли связи я использую кабель с наружным диаметром 8–10 мм, у которого экран - это гофрированная медная трубка.

    11. В непосредственной близости от антенны использую дроссель из кабеля - 6-7 витков этого же кабеля, намотанные на ферритовом кольце от отклоняющей системы телевизора.

    12. Антенна “не любит“ вблизи себя металлических предметов, длинных проводов и т.п. - это может сказаться на КСВ и диаграмме направленности.

    13. Высота магнитной антенны над землей для максимально достижимой эффективности ее работы должна быть не меньшей 0.1 длины волны самого низкочастотного диапазона этой антенны.

    При соблюдении перечисленных выше требований к построению магнитной рамки, получится действительно хорошая антенна, пригодная, как для местных связей, так и для работы с DX.
    По словам Leigh Turner VK5KLT: - “A properly designed, constructed, and sited small loop of nominal 1m diameter will equal and oftentimes outperform any antenna type except a tri-band beam on the 10m/15m/20m bands, and will at worst be within an S-point (6 dB) or so of an optimised mono-band 3 element beam that’s mounted at an appropriate height in wavelengths above ground.”
    (Надлежащим образом расчитанная, сделанная и правильно размещенная магнитная антенна диаметром 1 м, будет эквивалентна и часто превосходить все типы антенн, исключая трех-диапазонный волновой канал на 10м/15м/20м диапазоны, и будет хуже (примерно на 6 db) оптимизированной однодиапазонной 3-х элементной антенны волновой канал, смонтированной на надлежащей высоте в длине волны над землей) Перевод мой.

    Часть вторая.

    Широкополосная приемная магнитная антенна

    Во-первых, для антенны я использую центральную жилу кабеля, экран заземлён. Экран разорван вверху антенны на одинаковых расстояниях от усилителя. Зазор около 1 см.
    Во-вторых, усилитель к антенне подключен через ШПТ (широкополосный трансформатор) на трансфлюкторе для уменьшения проникновения электрической составляющей.


    (пересохраните схему на свой комп и она будет читаться лучше)
    В-третьих, усилитель имеет два каскада, оба двухтактные (для подавления синфазной помехи) на малошумящих транзисторах J310. В первом каскаде в каждом плече стоят по два транзистора параллельно с общим затвором, шумы каскада уменьшаются в корень квадратный из количества параллельно соединённых транзисторов, т.е в 1,41 раза. Есть мысль поставить по 4 транзистора в плечо.
    В-четвертых, питание должно быть как можно "чище", лучше всего - от батареи.

    Вот, выкладываю схему антенны

    Токи стоков всех транзисторов - 10-13 мА.
    На диапазонах 18, 21, 24 и 28 МГц я дополнительно использую отключаемые два усилителя (16db, и 9db). Их можно включить по одному или оба сразу. И, что очень важно, на всех диапазонах, сразу после антенны, я использую дополнительные 3-контурные ДПФ (как в трансивере RA3AO). Дополнительные ДПФ нужны, так как антенна принимает и усиливает все станции от ДВ до ФМ диапазона. Все это попадает на вход приемника и может перегружать его, что выразится в увеличении шумов и ухудшении чувствительности, а не в её улучшении.

    Сегодня провёл такой эксперимент. По периметру рамки антенны, с большим шагом навил толстый многожильный медный провод в изоляции. Общий диаметр провода около 5 мм. Вблизи усилителя установил двухсекционный конденсатор переменной ёмкости. Концы провода подключил к статорным секциям конденсатора. Получилась никуда не подключенная магнитная резонансная рамка. Диапазон такой конструкции получился таким: около минимума одной секции конденсатора - 20 м. Две секции в параллель - около максимума конденсатора - 80 м. Думаю, если добавить в параллель постоянный конденсатор, то и 160 м будет. Принимаемый сигнал вырос (по моим субъективным оценкам, - около 10 db минимально), помехоустойчивость антенны не ухудшилась, резонанс не острый, перекрывается весь диапазон 20 м, - перестраивать антенну нужно только при смене диапазона. Не трогая основной антенны, повысился коэффициент усиления, избирательность и, скорее всего, чувствительность.

    Причем на всех остальных диапазонах антенна принимает так же как и без дополнительного перестраиваемого контура.

    Долго думал, как поднять чувствительность антенны на верхних диапазонах и решил добавить еще одну резонансную рамку. Вот фото:

    Диаметр дополнительной рамки получился маленьким. Резонанс довольно острый, строится от 20 МГц до 29 МГц. Ниже не пробовал, так как есть другая рамка, которая строится на нижних диапазонах. На большой резонансной рамке переменный конденсатор заменил на "галетник" с постоянными конденсаторами для удобства переключения диапазонов.

    Доработал свою приемную антишумовую антенну – убрал дополнительные контура, перевернул антенну усилителем вверх, а снизу от разреза оплетки добавил два луча по 1,2 м многожильного провода. Длиннее провод у меня не получается добавить, ограничивают размеры балкона. По моему мнению, антенна стала работать намного лучше. Поднялась чувствительность на верхних диапазонах 21 - 28 МГц. Упали шумы. И еще одно замечание, - похоже, что ближние станции стало слышно потише, а уровень приёма дальних станций вырос. Но это субъективное мнение, т.к. антенна находится на балконе 5-го этажа 19-ти этажного дома. И, конечно же, есть влияние дома на диаграмму направленности.

    Картинки по запросу UA6AGW:

    Можно поэкспериментировать с длиной лучей, но у меня такой возможности нет. Возможно, можно будет поднять немного усиление в нужном диапазоне. Сейчас у меня максимум приема в районе 14 МГц."

    Часть третья .

    (Из письма) "Вчера на скорую руку сделал антенну на 10 м. Фото прилагаю.

    Это переделанная антенна 20-ти метрового диапазона, которую я делал раньше. Длина лучей осталась прежней около 2,5 м, я уже точно не помню. а сама антенна получилась диаметром 34 - 35 см. Какой кусок кабеля остался, такой и использовал. В результате у меня получилось следующее. Оба конденсатора на максимуме емкости. В этом положении конденсаторов чуть-чуть не дотягивает до 28.076 Мгц. Т.е. резонанс
    получается на 28140-28150 и выше по частоте. Лучи сначала хотел отрезать, но после этого не стал, т.к. частота уйдет еще выше. Петлю связи также поставил с 20-ти метровой антенны. В результате на 28076 КСВ получился 1,5 меньше никак не смог добиться. Но при этом решил попробовать работать в эфире. Работал на 8 ватт по показаниям
    ваттметра SX-600. Я сравнивал прием этой новой антенны с моей широкополосной приемной антенной, разницы я практически не увидел. На мою антенну шум эфира чуточку поменьше, а сигналы станций практически одного уровня. Это все я смотрел на SDR. С утра начал работать в эфире на CQ. Я был удивлен, насколько активно мне отвечали на мои 8 ватт, и рапортами, которые мне давали. С утра проход был на Европу и это были все европейские станции. Рапорта, которые я получал в основном мне
    давали, выше, чем я давал им. Теперь нужно поменять конденсаторы и укоротить лучи."

    Но антенна был очень капризной в настройке, при малейшем ветерке лучи шевелились и это сказывалось на КСВ. Видно было как пляшет стрелка КСВ-метра в такт с колебаниями лучей антенны. И я стал дальше заниматься этой антенной с целью сделать ее параметры устойчивыми и сама антенна могла бы быть легко повторена. В итоге после длительных обсуждений антенны с Владимиром КМ6Z мы пришли к выводу что внутренный проводник с конденсатором там лишний (иногда может быть и вреден). Я закоротил внутренний проводник с оплеткой на обеих концах антенны и конденсатор С2 убрал. Антенна работала также. Потом по подсказке KM6Z я заменил петлю связи на гамма согласование. После тщательной настройки я увидел что сигнал с антенны вырос. Дальше, опять же по подсказке KM6Z я вместо гамма согласования применил Т-согласование или двойное гамма согласование и снижение выполнил двухпроводной 300 омной линией. Сигнал с антенны еще больше увеличился, дополнительные усилители не использую, т.к. они просто уже не нужны и я заметил что пропала помеха от соседнего компьютера, которая раньше постоянно присутствовала, хотя двухпроводная линия проходит рядом с этим мешающим компьютером. В итоге я перестроил свою метровую магнитную рамку, приделал лучи около 2-х метров, сделал Т-согласование. В результате получившуюся антенну я назвал – “МАГНИТНЫЙ ДИПОЛЬ”. Эта новая антенна имеет такие параметры – диаметр 1.05 метра, полотно антенны – медная труба даметром 18мм, конденсатор вакуумный 4-100 пф, лучи – 2.06м. Антенна работает в 4-х диапазонах 30м, 20м, 17м, 15м. Правла КСВ на 30 и 17 метрах подгоняю добавляя к лучам по 30 см провода. Работаю в цифровых видах JT9 и JT65 10-ю ватами отвечают все, слышат все (смотрю по PSK Reporter). Австралия(14000-16000 км), Новая Зеландия (около 13000 км) не проблема совсем. Есть связь с Таиландом через Северный Полюс (а это очень проблемные связи) на все тех же 10 ватах. Связи на 3000 – 5000 км даже при слабом прохождении провожу каждый день. Европа 5000 – 7000 практически каждый день. Даже поднадоели.

    Магнитная рамочная домашняя антенна – отличная альтернатива классическим наружным. Такие конструкции позволяют передавать сигналы до 80 м. Для их изготовления чаще всего применяют коаксиальный кабель.

    Классический вариант магнитной рамочной антенны

    Рамочная магнитная установка – подтип малогабаритных любительских антенн, которые могут быть установлены в любой точке населенного пункта. При одинаковых условиях рамки показывают более стабильный результат, чем аналоги.

    В домашней практике используют наиболее удачные модели популярных производителей. Большинство схем приведено в любительской литературе радиотехников.

    Магнитная рамочная антенна из коаксиального кабеля в помещении

    Сборка антенны своими руками

    Материалы для изготовления

    Основным элементом является коаксиальный кабель нескольких типов, длиной 12 м и 4 м. Для сооружения рабочей модели также нужны деревянные планки, конденсатор 100 пФ и коаксиальный разъем.

    Сборка

    Магнитная рамочная антенна сооружается без специальной подготовки и знания технической литературы. Придерживаясь порядка сборки, можно с первого раза получить рабочее устройство:

    • деревянные планки соединить крестом;
    • в дощечках пропилить канавки, глубиной соответствующие радиусу проводника;
    • на планках у основания креста просверлить отверстия для закрепления кабеля. Между ними вырезать три канавки.

    Точная выдержка размеров позволяет соорудить конструкцию с высоким приемом радиочастот.

    Форма магнитных рамок

    Магнитная антенна из коаксиального кабеля – петля из проводника, которая подключается к конденсатору. Петля, как правило, имеет вид круга. Это обусловлено тем, что такая форма повышает эффективность конструкции. Площадь этой фигуры наибольшая по сравнению с площадью других геометрических тел, следовательно, и охват сигнала будет увеличен. Производители товаров для радиолюбителей выпускают именно круглые рамки.

    Установка конструкции на балконе

    Чтобы приборы работали на конкретном диапазоне волн, сооружают петли различных диаметров.

    Существуют также модели в виде треугольников, квадратов и многоугольников. Применение таких конструкций обусловлено в каждом конкретном случае разными факторами: расположение устройства в комнате, компактность и др.

    Круглые и квадратные рамки считаются одновитковыми, т.к. проводник не скручен. На сегодняшний день специальные программы типа KI6GD позволяют рассчитывать характеристики только одновитковых антенн. Этот вид неплохо зарекомендовал себя для работы на высокочастотных диапазонах. Главным недостатком их является крупногабаритность. Многие специалисты стремятся к работе на низких частотах, поэтому магнитная рамочная установка так популярна.

    Проведенные сравнительные расчеты нескольких схем с одним, двумя и более витками, при аналогичных условиях эксплуатации показали сомнительную эффективность многовиточных конструкций. Увеличение витков максимально целесообразно исключительно для уменьшения габаритов всего устройства. К тому же для реализации данной схемы необходимо повышение расхода кабеля, следовательно, неоправданно увеличивается стоимость самоделки .

    Полотно магнитной рамки

    Для максимальной эффективности работы установки необходимо добиться одного условия: сопротивление потерь в полотне рамки должно быть сопоставимо с величиной сопротивления излучения всей конструкции. Для медных тонких трубок это условие легко выполняется. Для коаксиальных кабелей большого диаметра такого эффекта добиться сложнее из-за высокого сопротивления материла. На практике применяются оба типа конструкций, т.к. другие типы работают намного хуже.

    Приемные рамки

    Если устройство выполняет исключительно функцию приемника, то для ее работы можно использовать обычные конденсаторы с твердыми диэлектриками. Приемные рамки для уменьшения габаритов выполняют многовиточными (из тонкой проволоки).

    Для передающих приборов такие конструкции не подходят, т.к. действие передатчика будет работать на нагрев установки.

    Оплетка коаксиального кабеля

    Оплетка магнитной рамки дает больший КПД, чем медные трубки и утолщение диаметра проводника. Для домашних экспериментов не подойдут модели в черной пластиковой оболочке, т.к. она содержит большое количество сажи. Во время работы металлические части при сильном нагреве оболочки выделяют вредные для человека химические соединения. К тому же эта особенность снижает сигнал передачи.

    Коаксиальный кабель SAT-50M производства Италии

    Этот тип коаксиального кабеля подходит исключительно для антенн большого размера, т.к. их сопротивление излучения проводника полностью компенсирует входное сопротивление.

    Воздействие внешних факторов

    Благодаря физическим свойствам коаксиальных кабелей, антенны не подвержены воздействию температуры и осадков. Негативным последствиям поддается лишь оболочка, создаваемая внешними факторами – дождем, снегом, льдом, т.к. вода имеет большие по сравнению с кабелем потери на высоких частотах. Как показывает практика, использовать такие конструкции на балконах можно в течение нескольких десятков лет. Даже при сильных морозах не наблюдается значительного ухудшения приема.

    Для повышения приема магнитные приборы из коаксиального кабеля лучше размещать в помещениях или местах уменьшенного воздействия осадков: под козырьками крыш, на защищенных частях открытых балконов. Иначе устройство будет работать в первую очередь на нагрев окружающей среды, и только потом на прием и передачу сигналов.

    Главным условием стабильной работы является защита конденсатора от внешних воздействий – механических, погодных и т.д. При длительном воздействии внешних факторов из-за высокочастотного напряжения возможно образование дуги, что при перегреве быстро приводит к отпайке от схемы или выходу из строя данной детали.

    Рамки для высокочастотных диапазонов выполняют горизонтальными. Для низкочастотных, при высоте более 30 м, целесообразно сооружение вертикальных конструкций. Для них высота установки не влияет на качество приема.

    Расположение устройства

    Если данный механизм будет расположен на крыше, то необходимо предусмотреть одно условие – эта антенна должна быть выше всех остальных. На практике добиться идеального размещения зачастую невозможно. Магнитная рамочная установка достаточно неприхотлива к близкому расположению сторонних предметов и сооружений – башен вентиляции и т.д.

    Правильным будет расположение на крыше сердечником вдаль так, чтобы не было поглощения сигнала большими моделями. Ввиду этого при установке на балконе снижается ее КПД. Такое расположение оправдано в тех случаях, когда обычные приемники работают некорректно.

    Синхронизация рамки и кабеля

    Согласование деталей достигается размещением индуктивной петли малых размеров в большую. Для симметричной связи в прибор включают специальный симметрирующий трансформатор. Для несимметричной – подключение кабеля напрямую. Заземление антенны производят в месте крепления шлейфа к основанию большого круга. Деформация шлейфа помогает добиться более точной настройки прибора.

    Модификация устройства из коаксиального кабеля

    Плюсы и минусы устройства

    Преимущества

    • низкая себестоимость;
    • простота монтажа и обслуживания;
    • доступность исходных материалов;
    • установка в небольших комнатах;
    • долговечность устройства;
    • эффективная работа вблизи других радиоприборов;
    • отсутствие особых требований для достижения качественного приема (такие устройства работают стабильно и летом и зимой).

    Недостатки

    Главным недостатком является постоянная подстройка конденсаторов во время смены рабочего диапазона. Уровень помех уменьшается поворотом конструкции, что во время работы бывает крайне затруднительно из-за геометрических форм и расположения деревянных дощечек. Из-за излучений на близком расстоянии происходит передача информации с магнитных лент (во время включения магнитофона) на устройства с катушками индуктивности (телевизоры, радио и т.п.) даже при выключенных антеннах. Уровень наводок можно уменьшить за счет изменения расположения прибора.

    Во время работы нельзя прикасаться к металлическим частям, из-за сильного нагрева можно получить ожоги.

    Делаем сами. Видео

    Как сделать широкополосную активную антенну своими руками, можно узнать из этого видео.

    Магнитная рамочная антенна является наиболее целесообразным бюджетным решением для домашнего использования. Главные преимущества – работа на разных частотах, простота сборки и компактность. Хорошо выполненный прибор может получать и передавать отличный сигнал на достаточно большое расстояние.

    Понравилась статья? Поделитесь ей
    Наверх