Каменноугольный водоносный комплекс. Водоносный неогеновый комплекс. Водоносный каширский карбонатный комплекс

Подземный водоносный комплекс Московской области представлен пятью горизонтами каменноугольных палеозойских отложений, представляющих интерес для водоснабжения: водоносный горизонт окской и серпуховской свит нижнего карбона, каширский и мячковско – подольский горизонты среднего карбона, касимовский и гжельский горизонты верхнего карбона.

Водоносные горизонты тульской, угленосной и упинской толщ нижнего карбона, расположенные подокскими известняками, а также горизонты верхнего девона на территории Московской области характеризуются малым водообилием и повышенной минерализацией вод.

Указанные пять водоносных горизонта, используемые для водоснабжения, отделены друг от друга значительными толщами глин, затрудняющими связь вод отдельных горизонтов. Каждый горизонт имеет свои условия формирования вод и различно реагирует на местные условия.

Водоносный горизонт окской и серпуховской свит нижнего карбона мощностью 60 – 70 м представлен известняками и доломитами. На юге области в пониженной части долины р. Ока водоносный горизонт имеет очень большое водообилие. Удельные дебиты скважин часто превышают 50 м3 / час, в то время как в других районах области удельные дебиты скважин этого горизонта редко достигают 25 м3 / час.

Каширский водоносный горизонт среднего карбона мощностью 40 – 60 м, представлен известняками и доломитами с прослойками известковых глин, характеризуется малым изобилием.

Исключение составляет территория города Коломна, где в силу специфических гидрогеологических условий наблюдаются значительные удельные дебиты водозаборных трубчатых колодцев.

Московско – подольский водоносный горизонт верхнего карбона мощностью около 45 м представлен доломитами и известняками с многочисленными прослойками известковых глин. В зоне, прилегающей к южной границе его распространения, встречаются участки, где он состоит, в основном, из глин, являясь практически безводным. В местах, где водоносный горизонт покрыт гжельскими отложениями, удельные дебиты трубчатых колодцев не превышают 15 м3 / час, а там, где гжельские отложения отсутствуют и водоносный горизонт располагается на небольшой глубине, удельные дебиты достигают 60 м3 / час (например город Щелково).

Гжельский водоносный горизонт верхнего карбона мощностью около 75 м состоит из доломитов и известняков с очень редкими и маломощными прослойками мергеля и известняковой глины. Горизонт имеет хорошо развитую трещиноватостъ и большое водообилие. Удельные дебиты трубчатых колодцев иногда превышают 60 м3 / час. В пределах Клинско - Дмитровской гряды удельные дебиты уменьшаются до 10 – 20 м3 / час.

В северной, восточной и на большей центральной части области отложения карбон покрыты толщей верхнеюрских глин мощностью от 10 до 60 м (район города Истры). Верхнеюрские глины служат водоупорной кровлей для вод карбона и создает напорность этих вод. В значительной части распространения верхнеюрских глин на них лежат пески и глины волжского яруса верхней юры и нижнего мела мощностью до 30 м (110 м в пределах Клинско–Дмитровской гряды).

Нижне – и верхнемеловые пески волжского яруса содержат огромные запасы подземных вод. Однако использовать эти воды для централизованного водоснабжения крайне трудно, т.к. пески очень мелкозернистые и глинистые с плохой водоотдачей. Вопрос использования этих вод является очень актуальным. Особенно в северных районах области.

Качество меловых вод, как правило, удовлетворительное. Они относятся к гидрокарбонатному типу с плотным остатком 200–300 мг /л, но часто содержат большие количества железа (до 10 мг /л). В опоковидных песчаниках верхнего мела и трепелах встречаются воды, которые в Загорском районе питают родники и колодцы. Такие воды слабоминерализованные, гидрокарбонатного типа с плотным остатком в пределах 150-200 мг / л.

Анализируя водоносный комплекс Московской области можно сделать вывод, что условия захвата подземных вод каменноугольных отложений чрезвычайно разнообразны. Поэтому глубины трубчатых колодцев, конструкция фильтров и оборудование варьируется в широких пределах.

По условиям залегания водоносных горизонтов, по качеству вод территорию области можно разделить на семь гидрогеологических районов.

1. Южный район имеет трубчатые колодцы, питающиеся водами серпуховской и окской свит нижнего карбона, глубиной 40 – 120 м с удельным дебитом до 15 м3 / час. Статические уровни воды в колодцах располагаются на глубине от 10 до 70 м. Плотные остатки вод не превышают 600 мг / л, содержание фтора около 1 мг / л.

2. Водозаборные скважины Юго – западного региона питаются водами каширского водоносного горизонта среднего карбона и серпуховской и окской свит нижнего карбона, Каширский водоносный горизонт характеризуется, как правило, небольшим водообилием. Удельные дебиты скважин составляют 2 – 3 м3 /час. В верхних слоях горизонта плотный остаток вод не превышает 300 мг / л, а содержание фтора порядка 0,5 мг / л. В нижних слоях плотный остаток до 500 мг / л. а фтор до 3 мг /л.

Водоносный горизонт нижнего карбона более водообилен. Удельные дебиты здесь достигают 5 – 7 м3 / час. Характерно, что минерализация вод нижнего карбона уменьшается с юго – востока на северо – запад. В юго – восточных частях района плотный остаток достигает 900 мг / л, содержание фтора составляет 2,5 – 3 мг / л, значительно возрастает сульфатность вод. В северо – западных частях района плотный осадок не превышает 400 мг /л, а количество фтора в воде до 1 мг /л.

3. Большой центральный район занимает значительную часть территории области. Трубчатые колодцы района питаются главным образом водами мячковско – подольского водоносного горизонта, реже – каширского водоносного горизонта среднего карбона и горизонтов нижнего карбона. В этом районе колодцы следует закладывать на мячковско – подольский горизонт, который характеризуется большим водообилием, чем нижнележащие горизонты. Удельный дебит скважин рекомендуемого горизонта достигает 15 м3 /час.

Воды Мячковско – подольского водоносного горизонта характеризуются плотным остатком до 500 мг / час, содержанием фтора обычно до 1 мг / л и относятся к гидрокарбонатному или гидрокарбонатно-сульфатному типу. Участки территории, приуроченные к районам залегания мезозойский фосфоритных отложений характеризуются водами с содержанием фтора до 5 мг /л.

4. В малом центральном районе трубчатые колодцы питаются водами Касимовского горизонта верхнего карбона и Мячковско – Подольского горизонта среднего карбона. Касимовский горизонт у южной границы района имеет мощность 10 – 20 м, к северу мощность его увеличивается до 45 м. Водообилие горизонта возрастает с юга на север, где удельный дебит скважин достигает 20 м3 / час. Воды горизонта имеют слабую минерализацию, плотный остаток не выше 300 мг/л, количество фтора до 0,6 мг л.

Мячковско - Подольский горизонт характеризуется небольшим водообилием, удельные дебиты достигают 10 м3 / час. Воды характеризуются значительной сульфатностью и минерализацией. Плотный остаток достигает до 1650 мг / л, содержание фтора составляет 5,5 мг /л.

1

Характеризуются гидрогеологические условия и проблемы территории Пермского края: дефицит пресных подземных вод, истощение их запасов, экологические проблемы. Обобщены материалы гидрогеологического картографирования и исследований. Выполнены гидрогеологическая стратификация и районирование территории. Построена современная гидрогеологическая карта. Выделены и охарактеризованы 25 основных водоносных комплексов и горизонтов зоны активного водообмена, имеющих различное практическое значение для водоснабжения. Дана их характеристика по водообильности отложений, химическому составу и качеству подземных вод. Отмечается связь водоносности отложений с геодинамическими активными зонами и тектоническими структурами. Основные перспективы поисков подземных вод для обеспечения населения пресной водой связаны с водообильными зонами, обусловленными геодинамическими факторами. Отмечено, что выявлению и картированию водообильных зон будет способствовать комплексирование стандартных гидрогеологических методов с дистанционными методами и геоинформационными технологиями.

гидрогеология

пресные подземные воды

водоносные комплексы и горизонты

водообильные зоны

гидрогеологическая карта

Пермский край.

2. Атлас Пермского края / под общей редакцией А.М. Тартаковского. – Екатеринбург: Уральский рабочий, 2012. – 124 с.: ил.

3. Буданов Н.Д. Гидрогеология Урала. – М.: Наука, 1964. – 303 с.

4. Гидрогеология СССР. Т. XIV. Урал / под ред. И.К. Зайцева. – М.: Недра, 1972. – 648 с.

5. Коноплев А.В., Копылов И.С., Пьянков С.В., Наумов В.А., Ибламинов Р.Г. Разработка принципов и создание единой геоинформационной системы геологической среды г. Перми (инженерная геология и геоэкология) // Современные проблемы науки и образования. – 2012. – № 6. – URL: http://www.science-education.ru/106-7893.

6. Копылов И.С. Геоэкологические исследования нефтегазоносных регионов: Диссертация на соискание ученой степени кандидата геолого-минералогических наук. – Пермь, 2002. – С. 307.

7. Копылов И.С. Составление гидрогеологической карты Пермской области масштаба 1:500 000 / Информ. карта. – М.: ВГФ, 2002.

8. Копылов И.С. Составление (обновление) серийных легенд государственных гидрогеологических карт масштаба 1:200 000 (Пермская серия) / Информ. карта. – М.: ВГФ, 2003.

9. Копылов И.С. Концепция и методология геоэкологических исследований и картографирования платформенных регионов // Перспективы науки. – 2011. – № 23. – С. 126-129.

10. Копылов И.С. Принципы и критерии интегральной оценки геоэкологического состояния природных и урбанизированных территорий // Современные проблемы науки и образования. – 2011. – № 6. – URL: www.science-education.ru/100-5214.

11. Копылов И.С. Гидрогеохимические аномальные зоны Западного Урала и Приуралья // Геология и полезные ископаемые Западного Урала. – Пермь, 2012. – С. 145-149.

12. Копылов И.С. Линеаментно-геодинамический анализ Пермского Урала и Приуралья // Современные проблемы науки и образования. – 2012. – № 6. – URL:www.science-education.ru/106-7570.

13. Копылов И.С. Аномалии тяжелых металлов в почвах и снежном покрове города Перми, как проявления факторов геодинамики и техногенеза // Фундаментальные исследования. – 2013. – № 1-2. – С. 335-339.

14. Копылов И.С. Составление геологического атласа Пермского края // Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П.Н. Чирвинского. – 2013. – № 16. – С. 356-362.

15. Копылов И.С. Закономерности формирования почвенных ландшафтов Приуралья, их геохимические особенности и аномалии // Современные проблемы науки и образования. – 2013. – №. 4. – URL: www.science-education.ru /110-9777.

16. Копылов И.С. Результаты и перспективы региональных гидрогеологических работ в Пермском крае и их геоинформационное обеспечение // Геоинформационное обеспечение пространственного развития Пермского края: сб. науч. тр. Перм. гос. нац. исслед. ун-т. – Пермь. – 2013. – Вып. 6 – С. 34-40.

17. Копылов И.С. Поиски и картирование водообильных зон при проведении гидрогеологических работ с применением линеаментно-геодинамического анализа // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. – 2013. – № 93. – С. 468-484.

18. Копылов И.С. Геодинамические активные зоны Приуралья, их проявление в геофизических, геохимических, гидрогеологических полях // Успехи современного естествознания. – 2014. – № 4. – С. 69-74.

19. Копылов И.С. Геоэкологическая роль геодинамических активных зон // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 7. – С. 67-71.

20. Копылов И.С., Коноплев А.В. Геологическое строение и ресурсы недр в атласе Пермского края // Вестник Пермского университета. Геология. – 2013. – № 3 (20). – С. 5-30.

21. Копылов И.С., Коноплев А.В., Ибламинов Р.Г., Осовецкий Б.М. Региональные факторы формирования инженерно-геологических условий территории Пермского края // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. – 2012. – № 84. – С. 102-112.

22. Копылов И.С., Ликутов Е.Ю. Структурно-геоморфологический, гидрогеологический и геохимический анализ для изучения и оценки геодинамической активности // Фундаментальные исследования. – 2012. – № 9-3. – С. 602-606.

23. Методические основы гидрогеологического районирования территории СССР / Л.А. Островский, Б.Е. Антыпко, Т.А. Конюхова. – М.: Недра. – 1990. – 240 с.

24. Минерально-сырьевые ресурсы Пермского края: энциклопедия / гл. ред. А.И. Кудряшов. – Пермь: Книжная площадь, 2006. – 464 с.

25. Михайлов Г.К., Оборин А.А. Подземная кладовая пресных вод Сылвенского кряжа. – Пермь: Изд-во Пермского ун-та, 2006. – 154 с.: ил.

26. Принципы гидрогеологической стратификации и районирования территории России (методическое письмо) / М.С. Голицын, М.В. Кочетков, Л.В. Леоненко и др. – М.: МПР РФ, 1998. – 21 с.

27. Шерстнев В.А. Водообильные зоны. – Пермь: ПГУ, 2002. – 132 с.

28. Шимановский Л.А., Шимановская И.А. Пресные подземные воды Пермской области. – Пермь: Кн. изд-во, 1973. – 195 с.

29. Likutov E.Yu., Kopylov I.S. Complex of methods for studying and estimation of geodynamic activity // Tyumen State University Herald. – 2013. – № 4. – С. 101-106.

Введение

Территория Пермского Прикамья - Пермского края является крупным регионом, площадью 160,6 тыс. км2, с населением - более 3 млн человек, характеризуется большим разнообразием природных условий и ресурсов, сложными гидрогеологическими и гидрогеоэкологическими условиями. В крае разведано 126 месторождений пресных подземных вод, с суммарными эксплуатационными запасами 1125 тыс. м3сут, из них (по данным ГИДЭК - 2010 г.) эксплуатируются 67 месторождений с общим водоотбором 226 тыс. м3/сут. Текущая потребность в хозяйственно-питьевых водах удовлетворяется подземными водами лишь на 15 %. Важнейшими проблемами территории являются отсутствие источников водоснабжения для многих населенных пунктов, дефицит пресных подземных вод, истощение их запасов, экологические проблемы, связанные с повсеместным загрязнением вод, недостаток современной региональной гидрогеологической информации .

Материалы и методы исследования

На основе материалов гидрогеологического картографирования и исследований (Л.И. Шимановский, Г.К. Михайлов, Е.А. Бобров, А.М. Оскотский В.И. Мошковский, Е.А. Иконников, В.А. Поповцев, С.В. Заякин, А.Г. Мелехов, И.М. Синицин, А.В. Ревин, В.П. Куликов, П.П. Ведерников, В.М Балдин, И.С. Копылов и др.) проведены систематизация, анализ данных; выполнена гидрогеологическая стратификация и районирование. В соответствии c территория расположена на стыке и в пределах четырех бассейнов подземных вод первого порядка: I - восточной окраины Восточно-Русского сложного бассейна пластовых вод, II - Предуральского сложного бассейна пластовых вод, III - Тимано-Печорского сложного бассейна пластовых вод, IV - Большеуральского сложного бассейна корово-блоковых вод, разделенные на бассейны (блоки) более низких порядков. В гидрогеологическом разрезе выделяются: водоносные или водоупорные этажи > водоносные комплексы (ВК) > водоносные горизонты (ВГ) или водоносные зоны (ВЗ). Наименования их приводятся согласно принципам гидрогеологической стратификации и обновленной серийной легендой государственных гидрогеологических карт масштаба 1:200 000 для Пермской серии листов с уточнением. Распространение их с учетом современных геологических и гидрогеологических основ показано на гидрогеологической карте (рис. 1).

Рис. 1. Основные водоносные комплексы и горизонты Пермского края

Результаты исследования и их обсуждение

В соответствие с изложенными принципами ниже приводится краткая характеристика основных гидрогеологических подразделений, имеющих практическое значение.

Водоносный комплекс кайнозойских образований включает ряд водоносных и водоупорных горизонтов элювиальных, делювиальных, аллювиальных, озерных, болотных, ледниковых, флювиогляциальных, полигенетических образований, а также относительно водоупорные горизонты неогеновых и палеогеновых образований. Все они могут иметь значение для водоснабжения, однако источники их не постоянны во времени, а воды их часто некондиционные по качеству.

Водоносный горизонт четвертичных аллювиальных образований распространён по долинам рек особенно - Камы, Чусовой, Сылвы, Обвы, Иньвы, Чермоза и др. Он объединяет отложения низких аккумулятивных террас (поймы, высокой поймы, I и II надпойменных террас) и верхних цокольных и эрозионно-аккумулятивных террас (III и IV надпойменных террас). Мощность аллювия находится в пределах 5-15 м, достигая 40-50 м в долине р. Камы. В верхней части разреза преобладают глины, суглинки и супеси, в нижней - пески, гравий, галечники. Коэффициенты фильтрации имеют значения в пределах первого десятка м/сут.

Аллювиальные отложения содержат грунтовые безнапорные воды, глубины, залегания которых определяются поверхностью террас над урезом воды и колеблются от 0 до 13 м. Дебиты родников обычно не превышают 0,2-0,3 л/с (до 8 л/с), скважин - 0,3-2 л/с при понижениях 1-7 м. Состав вод преимущественно НСО 3 -Са (Мg-Ca, Na-Ca) с минерализацией 0,1-3 г/дм 3 , в среднем 0,2 г/дм 3 . Питание подземных вод аллювия малых рек осуществляется за счет атмосферных осадков и притока из коренных отложений. Воды горизонта используются для водоснабжения водозаборами: Усть-Качка, Конец-Бор, Оханск, Кама. Из-за низкого гипсометрического положения помимо болотного загрязнения (Na, Cl, SO 4 , NO 3) велика вероятность попадания в него сточных вод.

Водоносный горизонт днепровских флювиогляциальных образований распространён в бассейне рек Весляны, Тимшора, Камы, Косы, Уролки. Связан с кварцевыми мелкозернистыми песками с редкой галькой. Мощность горизонта от 0,5 до 40 м. Воды HCO 3 -Ca (Na-Ca) состава с минерализацией 0,1-0,2 г/дм 3 . Возможно болотное загрязнение.

Относительно водоупорные горизонты неогеновых и палеогеновых образований распространёны в южной части территории в переуглублённых частях долин рек бассейна р. Буй. Представлены глинами, суглинками, с прослоями и линзами алевролитов, песков и галечников. Мощность отложений горизонтов до 20-25 м. По химическому составу воды HCO 3 -Ca (Mg-Ca, Ca-Mg) состава с минерализацией 0,3-0,4 г/дм 3 .

Водоносный комплекс мезозойских образований развит в северо-западной части территории в бассейнах рек Весляны, Косы, Иньвы. Водоносный горизонт средней юры сложен песками с линзами гравия и гальки, песчаниками и глинами с прослоями алевролитов мощностью до 25 м и более.Относительно водоупорный горизонт нижнего триаса сложен глинистыми породами с прослоями песчаников и алевролитов мощностью до 21 м. По составу воды НСО 3 -Са (Na) с минерализацией до 0,5 г/дм 3 . Водообильность невысокая, дебит родников не превышает 0,5 л/с. Возможно водоснабжение небольших предприятий и хозяйств.

Водоносный комплекс средней-верхней перми включает водоносные горизонты северодвинских, уржумских и казанских отложений. Водоносный горизонт северодвинских отложений верхней перми распространен в западной части территории, полосой с шириной до 30 км пестроцветных песчано-глинистых отложений, спорадически обводненных. Дебиты родников до 1 л/с, состав вод - НСО 3 -Са-Na, с минерализацией до 0,5 г/дм 3 .

Водоносный горизонт уржумских отложений средней пермиимеет широкое распространение в западной части Пермского Прикамья, c шириной до 120 км, мощностью до 200-260 м. Представлен красноцветной песчано-глинистой толщей с преимущественно песчаниковым (>50%) типом разреза с подчинёнными известняками, конгломератами, аргиллитами. Мощность водонасыщенных слоев составляет 1-5 м, редко достигает 10-15 м и более.По фильтрационным свойствам горизонт крайне неоднороден. Наиболее проницаемые пласты залегают выше местного эрозионного вреза, где формируют родниковый сток, характеризующийся нередко крупными по дебиту родниками (5-20 л/с и более). Водообильность отложений определяется геодинамическими и структурно-тектоническими условиями, с которыми связаны значительные водообильные зоны. Практически все они приурочены к узлам пересечения крупных линеаментов, отождествляемых с тектонических нарушениями и обуславливающими геодинамические активные зоны .По химическому составу воды HCO 3 (CI-HCO 3 , SO 4 -CI-HCO 3)-Na-Mg-Ca (Mg-Na-Ca, Ca-Mg-Na), с минерализацией 0,1-0,5 г/дм 3 . Иногда наблюдаются подтоки минерализованных вод.Подземные воды горизонта широко используется для водоснабжения средних населенных пунктов.

Водоносный горизонт казанских отложений приурочен к белебеевской свите казанского яруса средней перми. Распространён восточнее уржумского горизонта, полосой шириной до 30 км. Общая мощность 100-275 м. Отложения представлены песчаниками, конгломератами, алевролитами, аргиллитами, с линзами известняков, мергелей; но до глубины 100-150 м преобладает глинистый тип разрез (глин >50%). Водоносными являются пласты алевролитов с прослоями песчаников. Мощность водонасыщенных слоев обычно составляет 1-5 м, редко 5-10 м. Характерно спорадическое распространение подземных вод с отдельными водообильными зонами. Крупнейшие водообильные зоны (дебиты родников от 5-20 л/с до 50 л/с) установлены на стыке Пермского свода и Висимской впадины, характеризующимся повышенной геодинамической активностью и трещиноватостью пород .Подземные воды HCO 3 (Ca-Mg и Ca-Na) состава и минерализацией 0,2-0,4 г/дм 3 . Ниже местного эрозионного вреза (до глубины 100 м) установлены воды смешанного состава с минерализацией 10-15 г/л (на участках рек Иньвы, Чермоза, Нердвы). Подземные воды могут быть использованы эксплуатацией одиночных скважин производительностью 50-100 м 3 /сут.

Водоносный комплекс отложений уфимского яруса включает водоносные горизонты шешминских и сликамских отложений уфимского яруса нижней перми. Водоносный горизонт шешминских отложений (P 1 ss)приурочен к шешминскому горизонту верхнего подъяруса уфимского яруса. Выходит на поверхность полосой меридионального простирания шириной до 60 км, мощностью от 20-30 до 320-410 м, в придолинных частях рек Камы, Бабки, Тулвы, а также на водоразделах рек Камы и Вишеры, Буя и Быстрого Таныпа. Сложен переслаивающимися песчаниками, алевролитами, аргиллитами, с линзами известняков, мергелей; характерна загипсованность. Водоносными являются трещиноватые прослои пород, толщиной 1-3 м. Дебиты родников от 0,1-0,5 до 5-10 л/с. Состав вод выше эрозионного вреза преимущественно HCO 3 -Ca (Mg, Na),с минерализацией 0,2-0,5 г/дм 3 , ниже эрозионного вреза преобладают SO 4 (HCO 3 -SO 4 , CI-SO 4)-Ca (Na, Mg) воды с минерализацией от 1,5 до 14 г/дм 3 . Воды горизонта используются населением г. Перми для водоснабжения одиночными скважинами, колодцев и каптажа источников, редко - групповых водозаборов. В пределах водообильных зон возможно сооружение водозаборов с дебитом 1000-2000 м 3 /сут.

Водоносный горизонт соликамских отложений приурочен к нижнеуфимскому (соликамскому) горизонту. Выходит на поверхность в виде полосы меридионального простирания шириной до 30 км в Предуральском бассейне и узкой прерывистой полосой в пределах Тулвинской группы бассейнов, иногда перекрываясь шешминскими отложениями, и, погружаясь на запад под шешминский горизонт на глубину более 600 м. Мощность горизонта достигает 300 м и более. Представлен чередованием известняков, мергелей, аргиллитов, песчаников, гипсов. Состав вод преимущественно HCO 3 -Mg-Ca с минерализацией до 0,5 г/л, на участках с промышленно-бытовым загрязнением и подтоком вод из нижележащих отложений до 1,0 г/дм 3 , состав меняется на HCO 3 -CI и HCO 3 -SO 4 . В нижней зоне надсолевых вод на глубине 300-350 м развиты рассолы CI-Na состава с минерализацией до 155-317 г/дм 3 . Имеет большое практическое значение для водоснабжения, однако, из-за плохой защищённости подземные воды подвержены загрязнению.

Водоносный комплекс отложений кунгурского яруса представлен несколькими водоносными и водоупорными горизонтами. Первый кунгурский (иренский) ВГприурочен к западному крылу Пермско-Башкирского свода и крыльям Ксенофонтовско-Колвинского вала и Колвинской седловины. Сложен чередующимися гипсово-ангидритовыми и известняково-доломитовыми пачками, которые водоносны только в месте выхода их на поверхность; с погружением под более молодые породы комплекс становится водоупором (водоупорный иренский горизонт). Верхняя часть разреза подвержена интенсивному карстованию. Состав вод выше эрозионного вреза SO 4 -HCO 3 -Ca, с минерализацией до 3 г/дм 3 . На глубине порядка 100 м минерализация увеличивается до 4,1-9,3 г/дм 3 , состав вод SO 4 -Ca-Na, CI-Na. Подземные воды горизонта практически не защищены и могут быть подвергнуты загрязнению. Второй кунгурский ВГ распространен на поверхности в восточных частях Тимано-Печорского и Предуральского сложных бассейнов. По литологии отличается большим разнообразием. Исходя из фациальной неоднородности и невыдержанности водовмещающих пород, характеризуется сложными гидрогеологическими условиями, разнообразным химическим составом от HCO 3 до HCO 3 -SO 4 и SO 4 -CI-с минерализацией 0,1-3,0 г/дм 3 и более.

Водоносный комплекс ассельско-артинских отложений занимает прерывистую полосу вдоль восточного борта Предуральского прогиба. Сложен песчаниками, аргиллитами, с прослоями и линзами конгломератов, известняков, мергелей, мощностью до 330 м. Отложения фациально не выдержанны. Характерно полное отсутствие загипсованности. По составу воды комплекса преимущественно HCO 3 -Ca, с минерализацией до 0,1-0,8 г/дм 3 . Водоносные комплексы нижней перми в кунгурских и артинских отложениях представляют особый интерес для водоснабжения, особенно на Уфимского плато, где в линейных трещинных зонах дебит родников достигает 1000 л/с, а удельный дебит скважин - 135 л/с .

Водоносный комплекс среднего и верхнего карбона развит в пределах западного склона Урала площадями преимущественно субмеридионального простирания и сводовой части Ксенофонтовско-Колвинского вала. Сложен известняками, доломитами с прослоями песчаников, аргиллитов, мергелей толщиной до 200 м. Развиты трещинно-карстовые воды преимущественно HCO 3 -Mg-Ca, с минерализацией 0,1-0,7 г/дм 3 . Используется для централизованного водоснабжения г. Кизела. Перспективы связаны с линейными водообильными зонами, где дебиты родников достигают 100-400 л/с.

В пределах Большеуральского сложного бассейна корово-блоковых вод развиты следующие водоносные подразделения: ВК нижнего и среднего карбона, ВК карбонатных отложений среднего девона - нижнего карбона, ВК терригенных отложений девона, ВК карбонатных отложений силура - нижнего девона, ВК карбонатных отложений среднего - верхнего ордовика, ВК терригенных отложений нижнего - среднего ордовика, ВК терригенных отложений верхнего венда, ВК терригенных и метаморфических отложений нижнего венда, водоносная зона трещиноватости метаморфических пород рифея, водоносная зона трещиноватости магматических пород. Они содержат корово-блоковые воды, приуроченные к трещиноватой зоне коры выветривания и локальным тектоническим трещинам. Первые два ВК содержат трещинно-карстовые воды. В пределах развития тектонических трещин они более водообильны (дебит родников до 1-3 л/с). По составу воды преимущественно HCO 3 -Mg-Ca, с минерализацией 0,01 - 0,2 редко до 0,9 г/дм 3 . Подземные воды слабо изучены, по данным могут представлять интерес для локального водоснабжения.

Заключение

На территории Пермского края выделены 25 основных водоносных комплексов и горизонтов. Основные перспективы поисков подземных вод для обеспечения населения пресной водой связаны с водообильными зонами, расположенными неравномерно по площади, обусловленными главным образом действием геодинамических и структурно-тектонических факторов. Выявление и картирование водообильных зон наиболее эффективно проводить при комплексировании стандартных гидрогеологических методов с дистанционными методами и применением ГИС-технологий на основе создания баз данных, автоматизированных методов дешифрирования и обработки данных.

Библиографическая ссылка

Копылов И.С. ОСНОВНЫЕ ВОДОНОСНЫЕ КОМПЛЕКСЫ ПЕРМСКОГО ПРИКАМЬЯ И ПЕРСПЕКТИВЫ ИХ ИСПОЛЬЗОВАНИЯ ДЛЯ ВОДОСНАБЖЕНИЯ // Успехи современного естествознания. – 2014. – № 9-2. – С. 105-110;
URL: http://natural-sciences.ru/ru/article/view?id=34364 (дата обращения: 19.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Водоносными называют горные породы, которые содержат свободную воду и способны пропускать ее через свою толщу под действием силы тяжести. К таким породам можно отнести галечники, гравелиты, пески, известня­ки и др.

К водоупорным (водонепроницаемым) относят такие породы, которые весьма слабо пропускают (фильтруют) или совсем не способны отдавать и пропускать ее в природных условиях; к таким относят глины, тяжелые суг­линки, глинистые сланцы, аргиллиты, мергели и др. плотные породы.

Чередование пород в геологическом разрезе позволяет провести их рас­членение по литологическим особенностям на водоносные и водоупорные пласты. Наиболее распространенным подразделением (от более мелких к крупным) выделяют: водоносный горизонт, водоносный комплекс, гидрогео­логический этаж, гидрогеологический бассейн.

Под водоносным горизонтом принято понимать относительно выдер­жанную по площади и в разрезе насыщенную свободной гравитационной во­дой одно или разновозрастную толщу горных пород в гидродинамическом отношении являющуюся единым целым. По условиям залегания и их режиму выделяются водоносные горизонты грунтовых, межпластовых ненапорных и напорных (артезианских) вод (рис.2).

Водоносный комплекс представляет собой выдержанную в вертикаль­ном разрезе и имеющую региональное распространение водонасыщенную толщу одно или разновозрастных и разнородных по составу пород, ограни­ченную сверху и снизу регионально выдержанными водоупорными пластами, почти исключающими или затрудняющими гидравлическую связь со смеж­ными водоносными комплексами (рис.3).

Под гидрогеологическим этажом понимается совокупность водоносных комплексов, ограниченных только снизу или сверху и снизу мощными регио­нально выдержанными в пределах водонапорной системы трещинами водо­упорных пород.

Гидрогеологический бассейн - совокупность водоносных и относительно водоупорных горизонтов и комплексов выделяемых по общим условиям формирования состава и свойств заключенных в них вод.

В горном деле существует понятие обводненная зона. Под ней понимает­ся совокупность водоносных горизонтов или водоносных комплексов вскры­тых горными выработками или принимающих другое участие в их обводне­нии. Ими могут быть не только вскрытые горными выработками, но и выше­лежащие и нижележащие водоносные горизонты.

Подземные воды классифицируют по происхождению условиям залега­ния, гидродинамическим показателям и др.

В настоящее время принято выделять три основных типа подземных вод: зона аэрации распространенная от земной поверхности до уровня грунто­вых вод (первого в разрезе водоносного горизонта). Мощность ее зависит от различных факторов и изменяется от долей метра до 100 м и более. В состав зоны аэрации входят почвенные, капиллярные воды и верховодка (последняя залегает в зоне аэрации на линзах водоупорных пород).

Грунтовые воды залегают на сравнительно небольшой глубине на пер­вом от поверхности водоупорном слое, обычно они безнапорные. Поверх­ность грунтовых вод называется зеркалом. Артезианские воды - напорные, распространены на значительной площади между водонепроницаемыми по­родами кровли и подошвы. В артезианских структурах различают чехол, в котором расположены пластовые скопления подземных вод и складчатый фундамент, содержащий трещинно-жильные скопления подземных вод.

По данным замеров уровня грунтовых вод в скважинах, шурфах, ко­лодцах, источниках и др. можно составить карту поверхности (зеркала) грун­товых вод. С этой целью все выработки, где замерялись уровни воды наносят на топографическую карту, уровни пересчитывают на абсолютные отметки и по ним на карте проводят горизонтали, которые принято называть гидроизо-гипсами. По такой карте можно определить - направление течения и уклон потока, глубину залегания и мощность грунтового потока в любой точке или на любом участке, соотношение поверхностей грунтовых вод и рельефа, ха­рактер взаимосвязи грунтовых и поверхностных вод (рек и озера, водохрани­лища и т.д.).

Уровень напорных вод называется пьезометрическим. Последний всегда располагается выше кровли водоносного горизонта. Превышение пьезомет­рического уровня над кровлей называется напором. Характер пьезометриче­ской поверхности того или иного напорного водоносного горизонта на кар­тах изображается гидроизопьезами. Карта гидроизопьез как и гидроизогипс сопровождается гидрогеологическими разрезами, на которых показывают стратиграфические границы, литологические особенности пород в виде коло­нок, водоупорные толщи, напоры, абсолютные отметки. По карте гидроизо­пьез можно установить направление движения артезианского потока, пьезо­метрический уклон, мощность водоносного горизонта, участки фонтаниро-вания воды и др.

Водоносный комплекс

(a. waterbearing system; н. wasserfuhrender Komplex; ф. complexe aquifere; и. complejo acuifero ) - совокупность водоносных горизонтов или зон, приуроченных к толще определённого возраста. Xарактеризуется обычно закономерным изменением хим. состава подземных вод по простиранию и падению комплекса и неоднородностью фильтрационных свойств г. п. B. к. обычно выделяют, когда не представляется возможным оконтурить хорошо выдержанные водоносные горизонты (слабая гидрогеол. изученность, быстрая смена фациально- литологич. состава, сложное тектонич. строение и т.п.), напр. при разведке угольных м-ний, характеризующихся фациально- литологич. изменчивостью пород, при мелкомасштабном или обзорном описании района. Hаличие гидравлич. связи в пределах B. к. осложняет водоносных пород и увеличивает продолжительность осушит. работ на шахтах и в карьерах.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Водоносный комплекс" в других словарях:

    ВОДОНОСНЫЙ КОМПЛЕКС - комплекс водоносных горизонтов, одинаковых или разных по литологическому составу (однотипный или разнотипный В. к.) и, кроме того, одинаковых или разных по характеру скважности (пористости). В зависимости от характера скважности В. к. может быть… … Словарь по гидрогеологии и инженерной геологии

    Слой или несколько слоёв водопроницаемых горных пород, поры трещины или другие пустоты которых заполнены подземной водой. Несколько В. г., гидравлически связанных между собой, образуют водоносный комплекс. См. также Водопроницаемость… … Большая советская энциклопедия

    Зайцев, 1945, толща водоносных п., более или менее однородная по характеру водоносности н возрасту, представляющая собой системы водоносных горизонтов и относительно водоупорных п., близких по литологическому составу и как следствие этого характ … Геологическая энциклопедия

    водоносний комплекс - водоносный комплекс water bearing system *Wasserhältiger Komplex – система суміжних водоносних горизонтів із подібними гідрохімічними чи гідродинамічними умовами … Гірничий енциклопедичний словник

    Содержание 1 История создания 2 Минеральные воды и лечебные грязи … Википедия

    Представлена на примере 3х участков: 1. Дюны и Сестрорецкий Разлив 2. На границе муниципальных образований г.Сестрорецк и п. Солнечное 3. На границе Курортного и Приморского районов в п. Горская Александровская 4. Между посёлками Белоостров … Википедия

    - (LATVIJAS PADOMJU SOCIALISTISKA REPUBLIKA), Латвия (Latvija), расположена на C. З. Европ. части CCCP. Пл. 63,7 тыс. км2. Hac. 2623 тыс. чел. (1986). Столица Рига. B республике 26 адм. p нов, 56 городов и 37 пос. городского типа. … … Геологическая энциклопедия

    Бурение - (Drilling) Бурение это процесс строительства скважины, а также разрушения слоев земли с последующим извлечением продуктов разрушения на поверхность Бурение: на воду, цена, виды бурения, типы бурения, нефть, газ Содержание >>>>>>>>>>>>>> Бурение… … Энциклопедия инвестора

    - (Niger), Республика Нигеp (Republique du Niger), гос во в Зап. Африке. Пл. 1267 тыс. км2. Hac. 5,94 млн. чел. (1984). B адм. отношении делится на 7 департаментов, к рые подразделяются на 33 округа. Столица Ниамей. Офиц. язык… … Геологическая энциклопедия

    Ливийско Eгипетский артезианский бассейн, расположен в сев. вост. части Африки. Bключает терр. Eгипта, сев. часть Cудана, вост. p ны Ливии и сев. вост. p ны Чада. Пл. 3,49 млн. км2. Бассейн приурочен к Cахарской плите c докембрийским… … Геологическая энциклопедия

Основным источником водоснабжения загородных домов в Московской области являются водоносные комплексы каменноугольных палеозойских отложений.

Перечислим их:

  • Гжельско-ассельский и касимовский водоносные горизонты верхнего карбона,
  • Подольско-мячковский и каширский горизонты среднего карбона,
  • Протвинский и алексинско-тарусский горизонты нижнего карбона.

Перечисленные горизонты разделены между собой достаточно выдержанными прослоями глин, поэтому связи между собой они практически не имеют. Каждый горизонт имеет свои особенности водообильности, величины напора и химического состава подземных вод.

По этим характеристикам Московскую область можно разделить на шесть гидрогеологических районов.

  1. Водоносный гжельско-ассельский карбонатный комплекс

    Является основным источником водоснабжения в Талдомском, Дмитровском, Сергиево-Посадском, Пушкинском, Щелковском, Ногинском, Павлово-Посадском, северной части Орехово-Зуевского и Шатурского административных районов.

    Глубина залегания водовмещающих пород: от 2 до 190 м. Горизонт характеризуется весьма высокой, хотя и неоднородной водообильностью. Удельные дебеты скважин изменяются от 3 до 50 м3/час.

    Воды пресные, с нормативным содержанием примесей. Иногда отмечается повышенное содержание железа и фтора.

  2. Водоносный касимовский карбонатный комплекс

    Из этого водоносного горизонта берут воду Клинский, Солнечногорский, Мытищинский, Сергиево-Посадский, Пушкинский, Щелковский, Орехово-Зуевский, Ногинский, Павлово-Посадский, Раменский, Шатурский и Егорьевский районы.

    Водообильность у касимовского горизонта, как и у гжельско-ассельского весьма высокая, но неоднородная, дебеты скважин изменяются от 3 до 50 м3/час. Наибольшая водообильность отмечается в долинах рек.

    По химическому составу воды пресные, количество минеральных примесей 0,1-0,6 г/литр. В некоторых скважинах отмечается повышенное содержание железа и фтора.

  3. Водоносный подольско-мячковский карбонатный комплекс

    Этот водоносный горизонт распространен почти на всей территории Московской области, за исключением юго-западной части. Он является основным источником хозяйственно-питьевого водоснабжения в Волоколамском, Шаховском, Истринском, Рузском, Можайском, Одинцовском, Наро-Фоминском, Подольском, Домодедовском, Воскресенском, Коломенском, Чеховском административных районах.

    Глубина залегания кровли подольско-мячковского водоносного горизонта начинается от 10-20 м в долинах рек Рузы, Москвы, Пахры и Оки (местами он даже выходит на поверхность) и возрастает в северо-восточном направлении, достигая 450м. Напор воды в скважинах колеблется от 20 до 120м. Дебет скважин на воду, пробуренных на этот водоносный горизонт может достигать 15 м3/час.

    Минерализация воды возрастает к северо-востоку от линии Дмитров-Ногинск-Шатура и достигает 10 мг/литр, с повышенным содержанием фтора (до 6 мг/литр) и железа (до 2-3, иногда 7-10 мг/литр). Поэтому, если вы проживаете в данных районах, вам придется задуматься о приобретении качественной системы водоочистки .

  4. Водоносный каширский карбонатный комплекс

    Каширский водоносный комплекс распространен на всей территории Московской области и размыт на юге. Водовмещающими породами являются трещиноватые известняки и доломиты.

    Глубина их залегания изменяется от 10-20 м в долинах рек до 30-40 м на водоразделах. Каширский горизонт в основном напорный. Величина напора увеличивается по мере погружения горизонта в северо-восточном направлении. Удельный дебет скважин, пробуренных на этот горизонт, как правило, небольшой: 2-3 м3/час.

    Минерализация воды достигает 1,0 мг/литр с преобладанием сульфатов. Каширский водоносный комплекс в основном эксплуатируется в южной и юго-западной частях Московской области.

  5. Водоносный протвинский карбонатный комплекс

    Водовмещающими породами являются трещиноватые, часто закарстованные известняки. В северо-восточных районах появляются загипсованные доломиты, что сказывается на химическом составе воды.

    Уровни воды в скважинах на этот водоносный горизонт составляют от 9 м (у Можайска) до 89 м (у Подольска), а к северо-востоку от Москвы увеличиваются до 110-150 м. Дебет скважин составляет 3-5 м3/час.

    Вода в протвинском горизонте жесткая (до 15-20 м. моль/литр), с повышенным содержанием железа (2-3 мг/литр) и фтора (до 5 мг/литр).

  6. Водоносный алексинско-тарусский карбонатный комплекс

    Глубина залегания комплекса меняется от нескольких метров в долинах до 110 м на водоразделах и увеличивается в северо-восточном направлении, достигая 350-400 м в районе Шатуры и Дмитрова. Уровни воды в артезианских скважинах меняются от 0 до 60 м, снижаясь к долинам Волги и Оки.

Понравилась статья? Поделитесь ей
Наверх