Какие применяются методы от статического электричества. Защита от статического электричества. Возникновение и действие. Защита от статического электричества в быту

15.1. Мероприятия по защите от статического электричества необходимо осуществлять в соответствии с действующими нормативами.

15.2. Разработка технологических процессов и оборудования должна проводиться с учетом предотвращения опасной электризации веществ при их производстве и применении. Основные мероприятия по предотвращению опасных проявлений статического электричества должны быть указаны в директивном технологическом процессе.

При пуске нового или реконструкции производства следует проверить наличие и достаточность действующих устройств защиты от статического электричества и при необходимости обеспечить дополнительную его защиту.

15.3. Технологический регламент должен содержать параметры обрабатываемых в производстве веществ, характеризующие их электрические свойства (удельные электрические сопротивления) и чувствительность к электростатическим разрядам (минимальную энергию воспламенения), и описание средств защиты от статического электричества, а в технологических инструкциях и инструкциях по технике безопасности должен быть описан порядок их применения.

15.4. Наиболее вероятно возникновение и накопление электростатических зарядов на таких операциях, как просеивание, измельчение, смешение, загрузка и выгрузка из аппаратов, пневмо- и вакуум-транспортирование. Допустимые параметры технологического процесса, обеспечивающие электростатическую безопасность переработки каждого из видов продуктов, устанавливаются разработчиком директивного технологического процесса и регламента технологического процесса.

15.5. Для предупреждения возможности возникновения опасных электростатических разрядов необходимо предусматривать с учетом особенностей производства следующие меры защиты:

Заземление электропроводящего оборудования и коммуникаций;

Применение нейтрализаторов;

Подбор пар контактирующих материалов, электризующихся зарядами разных знаков;

Увлажнение окружающей атмосферы;

Применение электропроводных материалов для оборудования;

Применение спецодежды.

15.6. Для снижения интенсивности возникновения зарядов статического электричества следует:

Всюду, где это технологически возможно, паро- и пылевоздушные смеси очищать от взвешенных жидких и твердых частиц, жидкости - от загрязнений твердыми и жидкими примесями;

Поддерживать концентрацию горючих сред вне пределов взрываемости;

Всюду, где этого не требует технология производства, исключить разбрызгивание, дробление, распыление веществ;

Технологические процессы вести в соответствии с установленными параметрами;

Уменьшать скорости транспортирования и переработки, турбулентность потоков пыле-парогазовых смесей и жидкостей;

Исключать конденсацию и кристаллизацию паров и газов при истечении из трубопроводов, шлангов, форсунок, сопел.

15.7. Все технологическое оборудование (аппараты, емкости, коммуникации, покрытия рабочих столов и стеллажей, оснастка и др.), где возможно образование и накопление зарядов статического электричества, должно быть изготовлено из металла или электропроводных материалов и заземлено (электропроводными материалами являются такие, удельное объемное электрическое сопротивление которых не превышает 1Е5 Ом. м).

Аппараты, емкости, агрегаты, трубопроводы, в которых происходит перемещение, дробление, распыление, разбрызгивание продуктов, отдельно стоящие машины, агрегаты, аппараты, соединенные трубопроводами с общей системой аппаратов и емкостей, должны быть присоединены к внутреннему контуру заземления при помощи отдельного ответвления независимо от заземления соединенных с ними коммуникаций.

Последовательное включение в заземляющую шину (провод) нескольких заземляющих аппаратов, агрегатов или трубопроводов не допускается.

Допускается объединение заземляющих устройств для защиты от статического электричества с защитным заземлением электрооборудования.

Заземление смесительно-зарядной машины перед загрузкой должно осуществляться в соответствии с п. 9.6 настоящих Правил.

15.8. В конструкторской документации на технологическое оборудование должны быть указаны места для присоединения заземляющих проводников и способ их крепления.

В каждом производственном здании должна быть составлена схема (карта) заземления, в которой должны быть перечислены все оборудование, оснастка, инвентарь и т.п., подлежащие заземлению.

15.9. Сопротивление заземления любой наиболее удаленной точки внутренней поверхности оборудования, изготовленного из электропроводных (неметаллических) материалов, относительно внутреннего контура заземления не должно превышать 1Е6 Ом.

Сопротивление заземляющего устройства, предназначенного только для защиты от статического электричества, должно быть не более 100 Ом.

15.10. Заземляющие проводники и контур заземления должны быть проложены открыто, чтобы обеспечить возможность их осмотра. При этом должна быть обеспечена их устойчивость к механическим и химическим воздействиям.

Заземлители, наружный и внутренний контуры заземления должны быть выполнены в соответствии с требованиями правил устройства электроустановок и норм и правил по устройству молниезащиты зданий и сооружений.

Заземляющие проводники, предназначенные для защиты от статического электричества, окрашиваются в черный цвет с нанесением в местах присоединения к технологическому оборудованию и внутреннему контуру заземления одной поперечной полосы шириной 15 мм красного цвета. Допускается в соответствии с оформлением помещения окрашивать заземляющие проводники в иные цвета (кроме красного) с маркировкой красной полосой, как указано выше.

15.11. Соединение элементов контура заземления, присоединение заземлителей и заземляемых конструкций должны быть выполнены сваркой. В случае невозможности применения сварки допускается присоединение заземляющих проводников с помощью надежного резьбового соединения. При этом заземляющие проводники должны иметь на концах неразрезанное кольцо, электрически соединенное с основной жилой. Резьбовые соединения должны быть защищены от коррозии.

15.12. Трубопроводы, расположенные параллельно на расстоянии до 0,1 м друг от друга, должны соединяться между собой перемычками через каждые 20 м. При пересечении трубопроводов друг с другом, с металлическими лестницами и конструкциями на расстоянии менее 0,1 м они должны также соединяться перемычками.

Защитное заземление трубопроводов, расположенных на наружных эстакадах, должно отвечать требованиям норм и правил по устройству молниезащиты зданий и сооружений.

Металлические воздуховоды вентиляции должны быть заземлены через каждые 20 м с помощью проводников из алюминиевых сплавов диаметром не менее 5 мм, ленты сечением не менее 24 мм2.

15.13. Способные электризоваться движущиеся части машин и аппаратов, контакт которых с заземленным корпусом может быть нарушен, должны иметь специальные устройства (токосъемники) для обеспечения заземления.

Аппараты, в которых имеет место интенсивная электризация веществ, а также подвижные узлы виброоборудования (вибролотки, сита с механическим приводом и т.п.) должны быть заземлены не менее, чем в двух точках.

15.14. Для уменьшения удельного поверхностного электрического сопротивления веществ, составов и конструкционных материалов там, где это допускается условиями технологического процесса, рекомендуется поддерживать относительную влажность воздуха не ниже 65%.

15.15. Пересыпание веществ следует производить с возможно малой высоты. Повсеместно следует систематически, в сроки, установленные инструкциями, влажным способом очищать от осевшей пыли оборудование, воздуховоды вентиляции и другие конструкции в помещении.

Запрещается загрузка сыпучих продуктов непосредственно из бумажных, полиэтиленовых, полихлорвиниловых и других электризующихся мешков в люки аппаратов, содержащих пары горючих жидкостей. В этом случае следует применять загрузочные устройства из проводящих материалов, обеспечивающие наименьшее пыление веществ.

Отбор проб сыпучего вещества, измерение технологических параметров посредством вносимых пробоотборников и приборов следует производить после осаждения пыли.

15.16. Измерение параметров электризации в условиях производства проводится периодически в соответствии с утвержденным графиком проведения измерений, но не реже двух раз в год. Для проведения измерений должны применяться приборы в искробезопасном и взрывозащищенном исполнении, допущенные к применению для данных производств, обеспечивающие электростатическую безопасность измерений и прошедшие государственные или ведомственные испытания.

15.17. Приемка в эксплуатацию устройств защиты от статического электричества должны производиться одновременно с приемкой технологического и энергетического оборудования.

В процессе эксплуатации устройств защиты от статического электричества необходимо:

Перед началом работы проверить надежность электрического контакта заземляющих проводников в местах соединения и непрерывность электрической цепи по всей длине;

Не допускать загрязнения, механических повреждений, длительного воздействия щелочей, кислот, органических растворителей на элетропроводные покрытия технологического оборудования, рабочих мест.

15.18. Осмотр и измерение электрических сопротивлений заземляющих устройств технологического оборудования, трубопроводов и т.п. рекомендуется проводить одновременно с проверкой заземления электрооборудования. Результаты проверочных испытаний, а также ревизий и ремонтов заземляющего устройства должны заноситься в паспорт. Результаты измерения сопротивления заземления технологических аппаратов, оборудования, подвижного оборудования, транспортных устройств, оснастки должны регистрироваться в специальном журнале.

Статическое электричество возникает вследствие сохранения зарядов электростатического поля на диэлектрических материалах. Оно отрицательно влияет на жизнь человека и эксплуатацию электрических устройств. Образование искр от статического электричества способствует пожарам и взрывам. Мощности энергии вполне хватит для возгорания газовоздушных смесей и пыли.

Заряд статического электричества может накапливаться на теле человека, если на нем одежда из шерсти или из химических волокон. Величина потенциала около 7 Джоулей не составляет опасности для человека, однако способна вызвать судороги и сокращения мышц. А это в свою очередь может создать условия для травмы на работе, падения с высоты и т.д.

Статическое электричество отрицательно влияет на функционирование точных приборов, радиосвязи, вызывает неисправности в работе. Работники, на которых постоянно воздействует статическое электричество, чаще болеют сердечно-сосудистыми заболеваниями и болезнями нервной системы.

Только защита от статического электричества способна свести к нулю или вовсе не допустить возникновение этого отрицательного явления.

Источники статического электричества
  • Действие различных излучений.
  • Резкое изменение температуры.
  • Взаимодействие тел друг с другом при движении.

Это явление оказывает негативное влияние и представляет опасность. Защита от статического электричества позволяет полностью предотвратить или значительно уменьшить его действие.

В бытовых условиях статическое поле часто возникает на шерсти животных, при снятии синтетической одежды, расчесывании волос, при ношении резиновой обуви, хождении по ковру в шерстяных носках, пользовании пластмассовыми изделиями.

Электростатическое поле не угрожает жизни человека, при разряде образуется слабый ток, который не способен слишком навредить организму человека. Он может создать лишь некоторое некомфортное состояние. Для предотвращения такого эффекта необходимо соблюдать всего лишь несколько простых правил: в морозную и сухую погоду не гладить животных, медленнее снимать шерстяную одежду, либо обработать ее специальным составом, при расчесывании волос применять деревянную или металлическую расческу.

Накапливанию электростатической энергии способствуют:
  • Железобетонные стены здания.
  • Слишком сухой воздух.

Для электронных устройств заряд электростатического поля является злейшим врагом. Некоторые элементы электронных устройств не способны выдержать высокие напряжения, возникающие при разряде. Чувствительные элементы могут выйти из строя или ухудшить свои параметры работы.

Если объектом воздействия электрического поля станут легковоспламеняющиеся жидкости, это создаст условия для их воспламенения. Эти жидкости при перевозке в цистернах могут накопить статический заряд. Также заряд возникает и от механизма или человека, подошедшего к ним близко. Поэтому в промышленном производстве, где имеются легковоспламеняющиеся жидкости, большое внимание уделяют устройству заземления подвижных конструкций, механизмов. Для пошива обуви и специальной одежды на производстве также применяются специальные ткани, которые не способны накапливать электрический заряд.

Принцип действия

Разберемся, как образуется статический заряд. В нормальном состоянии физические тела обладают одинаковым числом отрицательных и положительных частиц. За счет этого баланса создается нейтральное состояние тела. При нарушении нейтрального состояния тело получает электрический заряд одного полюса.

Статикой называется состояние тела в покое, когда оно находится без движения. В веществе тела может возникать поляризация, которая выражается в передвижении зарядов между частями тела, либо от находящегося рядом предмета.

Вещества электризуются из-за разделения тел, изменения зарядов во время трения, резкого изменения температуры, облучения. Заряды электрического поля находятся на поверхности тела или удалены от поверхности на расстояние, равное межатомному расстоянию. Если тела не заземлены, то заряды концентрируются на контактной площади, а при наличии заземления заряд уходит в контур заземления.

Процессы накапливания зарядов и их стекание происходят в одно время. Тело электризуется при условии получения им большего заряда энергии, по сравнению с расходуемым зарядом. В результате становится понятно, что защита от статического электричества должна отводить накапливаемые заряды на заземляющий контур.

Величина статического электричества

Все физические вещества имеют свою характеристику на трибоэлектрической шкале, в зависимости от их способности создавать электрические заряды различных полюсов при трении. Основные такие вещества изображены на рисунке.

Чтобы иметь представление о размерах возникающих статических зарядов, рассмотрим несколько примеров:
  • Вращающийся шкив с приводным ремнем способен зарядиться до 25000 вольт.
  • Кузов автомобиля, движущегося по сухой дороге, может получить заряд до 10000 вольт.
  • Человек в шерстяных носках при хождении по сухому ковру способен накопить заряд на теле до 6000 вольт.

В результате становится понятно, что напряжение электростатического поля может достигнуть значительных размеров даже в быту. Этот заряд не причиняет человеку значительного вреда ввиду его малой мощности. Разряд протекает через большое сопротивление и исчисляется в нескольких долях миллиампера.

Влажность воздуха также снижает электростатический заряд. Она влияет на значение потенциала тела во время прикосновений с разными материалами. Поэтому защита от статического электричества может заключаться в применении .

В природной среде существует статическое электричество, достигающее огромных значений. Например, при движении облаков между ними возникают большие потенциалы энергии, которые выражаются в разрядах молнии. Мощность этих разрядов вполне хватит, чтобы сжечь деревянный дом или расколоть ствол многолетнего дерева.

В бытовых условиях при разрядах электростатического поля человек чувствует мелкие пощипывания в пальцах, видны искры от трения шерстяной одежды, снижается работоспособность человека. Электростатическое поле негативно влияет на состояние человека, но явных повреждений не наносит.

Существуют измерительные приборы, способные точно измерить значение статического потенциала накопленного заряда на теле человека и на корпусе какого-либо устройства.

Защита от статического электричества

Существуют различные методы защиты от разрядов электростатического поля, как в быту, так и в промышленных условиях. Они имеют свои отличия. Рассмотрим подробнее каждые из них.

Защита в бытовых условиях

Каждый человек должен представлять опасность, которую несут статические разряды для организма. Их необходимо знать, и уметь их ограничивать. Для решения этой задачи организуются разные мероприятия по обучению людей методам защиты, в том числе телепередачи.

На этих мероприятиях людям объясняют, откуда и как появляется статическое поле, методы его измерения и приемы выполнения профилактической работы. Например, чтобы избежать неприятных ощущений статического поля, для расчесывания волос целесообразно использовать деревянные расчески, вместо пластиковых. Дерево имеет нейтральные характеристики, и во время трения не создает заряды электростатического поля. В магазинах можно без труда приобрести деревянную расческу любой формы и вида.

Чтобы предотвратить образование статического потенциала на кузове автомобиля при езде по сухому дорожному покрытию, применяют специальные антистатические ленты, которые фиксируются сзади автомобиля на днище кузова. В торговой сети можно без труда выбрать любой вариант такой ленты.

Если автомобиль ничем не защищен от возможного разряда накопленного заряда потенциала, то напряжение можно снимать временным заземлением кузова автомобиля путем его соединения с землей через металлическую часть. Для этого можно использовать ключ зажигания. Снимать напряжение в обязательном порядке необходимо перед тем, как заправлять автомобиль бензином.

Когда на одежде из химических волокон образуется статический заряд, то рекомендуется пользоваться «Антистатиком». Это специальный баллончик в виде аэрозоля, который продается в магазинах. Он снимает статическое электричество с одежды, тканей, с синтетических чехлов на сиденьях автомобиля, особенно в зимнее время, когда воздух сухой. Но, чтобы не использовать различные баллончики и химию, рекомендуется носить одежду из натуральных материалов: хлопка и льна.

Если на обуви прорезиненная подошва, то это создает условия для накопления потенциала напряжения. Чтобы этого не произошло, достаточно в обувь положить специальные антистатические стельки, которые сделаны из натуральных материалов. В результате негативное влияние на человека уменьшится.

Слишком сухой воздух зимой в городских квартирах способствует накапливанию электростатического заряда. Для этого существуют специальные устройства – увлажнители воздуха. Если такого устройства нет, то вполне подойдет большая влажная салфетка, которую необходимо положить на батарею. В результате процесс накопления заряда уменьшится, обстановка в квартире улучшится. Также рекомендуется регулярно производить влажную уборку. Это позволит вовремя удалять пыль и наэлектризованные участки. Такой способ является лучшим.

Электрические устройства в быту при эксплуатации также накапливают статический заряд на корпусе. Для снижения действия статического заряда выполняют систему уравнивания потенциалов. Она подключается к заземляющему контуру всего дома. Акриловая ванна подвержена накоплению на ней статического заряда, и ее необходимо защищать системой уравнивания потенциалов. Даже чугунная ванна с акриловым вкладышем также подвержена этому негативному явлению.

Защита от статического электричества на производстве
В промышленном производстве применяют несколько способов сохранения функциональности оборудования:
  • Увеличение стойкости устройств и оборудования к воздействию электростатического разряда.
  • Блокировка проникновения заряда на рабочее место.
  • Недопущение возникновения электростатических зарядов.

Два последних способа дают возможность осуществлять защиту многих устройств, а первый способ применяется только для отдельных видов оборудования.

Высокую защиту от разрядов статического поля и сохранения функциональности устройства обеспечивает . Это металлическая клетка в виде сетки с мелкой ячейкой. Клетка ограждает оборудование со всех сторон. Она подключается к заземляющему контуру. Внутрь клетки не проходят электрические поля, в то же время магнитному статическому полю, клетка Фарадея не мешает. По такому же принципу защищают кабели, оснащая их металлическим экраном.

Защита от статического электричества делится по методам выполнения:
  • Конструкционно-технологические.
  • Химические.
  • Физико-механические.

Последние два метода дают возможность снизить образование зарядов и повысить скорость их ухода в землю. Первый метод выполняет защиту устройств от зарядов, но не отводит их на заземление.

Оптимизировать снижение электростатического заряда можно следующим образом:
  • Увеличением токопроводимости материалов.
  • Созданием коронирования.
Такие задачи решают с помощью:
  • Выбора материалов с хорошей объемной проводимостью.
  • Увеличением рабочих поверхностей.
  • Ионизацией воздушного пространства.

Для реализации этих задач создают магистрали для протекания на землю статических зарядов, минуя рабочие компоненты устройств. Если материалы имеют высокое сопротивление, то применяют другие способы.

Существование человека в конкретной среде связывается с воздействием на него (и на окружающие условия) электромагнитных полей. Какой можно сделать вывод в случае наличия неподвижных зарядов? Значит, речь идет об электростатических полях.

Главная опасность

В данном случае нервная система людей испытывает большую нагрузку. Это обусловлено тем, что электрические поля от избыточного количества зарядов воздействуют на тело, одежду и предметы. Сердечно-сосудистая система организма также реагирует на данные явления.

Основная информация

Что представляет собой статическое электричество? Оно возникает тогда, когда происходит нарушение внутримолекулярного или атомного равновесия. Это обусловлено потерей или приобретением электрона. В норме для атома характерно равновесное состояние. Это объясняется одинаковым числом отрицательных и положительных частиц. Речь идет об электронах и протонах. Первые легко перемещаются от одних атомов к другим. При этом происходит формирование отрицательных и положительных ионов. Таким образом, статическое электричество возникает тогда, когда происходит подобный дисбаланс.

Главные причины появления

Статическое электричество может возникнуть под воздействием ряда факторов, среди которых можно выделить следующие:


Подробнее об опасностях

Электризация различных материалов может представлять угрозу для людей. В связи с этим правила защиты от статического электричества требуется знать каждому. Главная опасность заключается в возможности возникновения искрового разряда. Это относится как к изолированному проводящему объекту, так и к наэлектризованной поверхности.

Возможность возникновения разряда

Это происходит тогда, когда напряженность соответствующего поля над поверхностью проводника или диэлектрика (что обусловлено накоплением зарядов на них) достигло критической величины. Последнюю иногда называют пробивной. Данная величина для воздуха составляет приблизительно 30 кВ/м.

Другие опасности

Из-за искровых разрядов может произойти возгорание горючих смесей. Это случится тогда, когда выделяющаяся энергия будет больше той, которая поспособствовала началу пожара. Также существует общее значение. Эта энергия должна быть выше минимального аналогичного параметра зажигания горючей смеси.

Возможные последствия

Зачем нужно знать основные правила защиты от статического электричества? В некоторых случаях от его воздействия могут возникнуть нежелательные нервные и болевые ощущения. Иногда это приводит к непроизвольному резкому движению человека. В результате он может получить какую-либо механическую травму. В данном случае большую роль играет собственное статическое электричество человека.

Особенности контроля

Существует соответствующий ГОСТ. Статическое электричество действительно может быть крайне опасным. Для снижения рисков установлены допускаемые уровни напряженности соответствующих полей. Все это должно жестко контролироваться на рабочих местах. Также необходимо соблюдать санитарно-гигиенические нормы. Данные требования распространяются на поля, которые возникают из-за электризации определенных материалов, а также во время использования установок. В последнем случае подразумевается высокое напряжение постоянного тока. Их соблюдение - основная защита от статического электричества. ГОСТ определяет допускаемые уровни напряженности на рабочих местах. Также там прописаны общие требования к защитным средствам и осуществлению контроля. Что касается допустимых уровней напряженности электрических полей, то они устанавливаются с учетом времени пребывания сотрудников на рабочих местах.

Выбор подходящих средств

Защита от статического электричества может быть организована различными способами. Прежде всего нужно принимать во внимание следующее:

  1. Особенности технологических процессов.
  2. Микроклимат помещений.
  3. Физико-химические свойства обрабатываемых материалов.

Таким образом, разрабатывается подход к организации мероприятий по безопасности. Снятие статического электричества может быть реализовано несколькими путями:

  1. Устранением образовавшихся зарядов.
  2. Уменьшением их интенсивности.

Что касается последнего случая, то ответ на вопрос о том, как снять статическое электричество, заключается в следующем: это достигается благодаря снижению силы и скорости трения, повышению проводимости материалов и различиям в их соответствующих свойствах. Далее следуют практические рекомендации:


Самые действенные методы

Заряды могут образоваться в процессе разбрызгивания, распыления и расплескивания определенных жидкостей. Идеально, когда такие явления будут устранены совсем. Если такой возможности нет, то нужно хотя бы максимально их ограничить. К примеру, при наполнении резервуаров диэлектрическими жидкостями использовать свободно падающую струю нельзя. В этом случае сливной шланг направляется вдоль стенки для того, чтобы избежать брызг. Идеально, если есть возможность опустить его под уровень жидкости. Чем меньше электропроводимость материалов, тем выше интенсивность образования зарядов. Таким образом, желательно повышать ранее указанный параметр имеющихся элементов. Это можно сделать с помощью введения антистатических присосок. Соответственно, для покрытия полов должен использоваться специальный линолеум. Проведение периодической антистатической обработки ковров очень желательно. Это также относится и к синтетическим тканям. Желательно, чтобы соприкасающиеся вещества и предметы были изготовлены из аналогичных материалов. В этом случае контактная электризация также исключена. К примеру, полиэтиленовый порошок должен храниться в бочках из аналогичных материалов. Транспортировать и пересыпать его лучше только с использованием соответствующего трубопровода и шланга. В некоторых случаях осуществить это невозможно. Тогда допустимо применение материалов, которые близки по диэлектрическим свойствам. Итак, можно сделать небольшой вывод о том, что для защиты от статического электричества необходимо применение слабо- или неэлектризующихся материалов. Также нужно стремиться к устранению следующих явлений в работе с диэлетрическими жидкостями:

  1. Плескания.
  2. Разбрызгивания.
  3. Распыления.
  4. Трения.

Если возможности полного устранения нет, то нужно хотя бы максимально ограничить их.

Дополнительные способы

Влажный воздух обладает достаточной проводимостью для того, чтобы образующиеся заряды могли стекать через него. Таким образом, в соответствующей среде они практически не возникают. Исходя из этого увлажнение воздуха - самый распространенный и наиболее простой способ борьбы со статическим электричеством. Также существуют и другие методы обеспечения безопасности. Речь идет об ионизации воздуха. Она также является распространенным методом борьбы с электрическими зарядами. Дело в том, что ионы способствуют их нейтрализации. Они вырабатываются специальным прибором. Бытовой ионизатор имеет массу преимуществ. Прежде всего, он способствует улучшению аэроионного состава воздушной среды помещения. При этом устраняются электрические заряды, которые возникают на одежде, синтетических покрытиях и коврах. Что касается производства, то там используются мощнейшие ионизаторы. Встречаются различные конструкции. Однако электрические ионизаторы наиболее распространены.

Статическим электричеством называется появление свободного заряда на поверхностях диэлектриков. Возникновение электростатического поля несёт в себе большую опасность для производственных циклов, связанных с горючими веществами, пылью, легко воспламеняющимися парами. Эти заряды могут порождать нарушения в работе электронных устройств и приборов. Защита от статического электричества необходима и для профилактики многих заболеваний.

Природа статического электричества

В равновесном состоянии молекулы и атомы любого вещества имеют одинаковое количество положительно и отрицательно заряженных частиц. Отрицательно заряженные частицы, электроны, могут перемещаться от одного атома к другому, создавая тем самым разные заряды атомов.

Там, где появляется лишний электрон, - заряд отрицательный. Где недостаёт электрона - положительный. Эти неподвижные в пространстве заряды создают электростатическое поле. Оно возникает в таких случаях:

Очень опасно перевозить бензин в пластиковых канистрах. При трении жидкости о стенки образуется статическое электричество, которое может вызвать искру и воспламенить пары бензина.

Искры, возникающие в процессе разряда электростатических полей, способны вызвать возгорание в запылённых и загазованных помещениях.

Опасность для человека

Необходимость устранять опасности, связанные с появлением электростатического поля, существует и на производстве, и в быту. Защита от статического электричества на производстве является обязательной при взрывоопасных и пожароопасных производственных процессах . В соответствии с правилами техники безопасности необходимо защищать работников на предприятиях от поражения током.

Напряжённость электростатического поля невелика и при редком воздействии не вредит здоровью, но при этом возможно возникновение мышечных реакций, судорог, которые приведут к аварии. Длительное же воздействие электростатических полей может оказывать влияние на работу сердечно-сосудистой системы . Отрицательно действует электростатическое поле и на электронные приборы. В результате разряда они часто выходят из строя.

Защита на предприятиях

Статическое электричество и защита от него - вопросы, которые серьёзно прорабатываются при создании правил техники безопасности на предприятиях. Соблюдение их должно защитить персонал от поражения током и предотвратить нарушения технологического процесса.

Меры, применяемые на производстве, состоят в снижении интенсивности генерации полей и в отводе заряда. Для снижения интенсивности применяется:

  • Очистка горючих газов и жидкостей от загрязнений твёрдыми и жидкими примесями.
  • Отказ по возможности от дробления и распыления веществ в технологическом цикле.
  • Соблюдение проектной скорости перемещения материалов в магистралях и аппаратах.

Для отвода заряда требуется заземление всех металлических и электропроводных частей оборудования, металлических кожухов и трубопроводов. Заземлять следует и движущиеся приспособления и вращающиеся элементы, которые не имеют постоянного контакта с землёй. Увеличение проводимости диэлектрических материалов тоже способствует отводу заряда. Это достигается применением поверхностно-активных веществ, увеличивающих проводимость диэлектриков. Поддержание влажности воздуха не ниже 60−70% является успешным методом борьбы со статическим электричеством.

Нейтрализаторы применяются, если технологических мер оказывается недостаточно. Эти приборы используются для нейтрализации поверхностных электрических зарядов ионами разного знака . Для ионизации воздуха электрическим полем высокого напряжения применяются индукционные и высоковольтные нейтрализаторы.

В целях нейтрализации зарядов во взрывоопасных помещениях успешно применяются радиоизотопные нейтрализаторы. Ионизация происходит за счёт активного α или β излучения.

Индивидуальными методами защиты являются специальная обувь и одежда.

Обеспечение безопасности дома и квартиры

Свободный электрический заряд накапливают: резиновая обувь, синтетическая одежда, линолеум и пластик, ковры, железобетонные стены. Для защиты жилых помещений прежде всего нужно следить, чтобы влажность воздуха была не меньше 60%.

Существует большой выбор увлажнителей воздуха, которые способны решить эту проблему. Для нейтрализации электростатических зарядов применяются ионизаторы воздуха. Правила защиты от статического электричества:

  • Использовать в жилых помещениях зануление и заземление электропроводки.
  • Избавляться от пыли, не допускать её скопления на ковровых покрытиях.
  • Соблюдать правила электробезопасности.
  • Обрабатывать синтетическую одежду антистатиком.

Защита от свободных электрических зарядов поможет сберечь здоровье, избежать взрывов и возгораний, улучшить работу технологических устройств и электронных приборов. Эти меры очень важны как для охраны каждого дома, так и для безопасности и улучшения условий для работников на производстве.

Допустимые уровни напряженности электростатических полей установлены в ГОСТ 12.1.045-84. «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля.» Допустимые уровни напряженности полей зависят от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей равен 60 кВ/м в 1 ч.

Применение средств защиты работающих обязательно в тех случаях, когда фактические уровни напряженности электростатических полей на рабочих местах превышают 60 кВ/м.

При выборе средств защиты от статического электричества должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке защитных мероприятий.

Защита от статического электричества осуществляется двумя путями:

  • * уменьшением интенсивности образования электрических зарядов;
  • * устранением образовавшихся зарядов статического электричества.

Уменьшение интенсивности образования электрических зарядов достигается за счет снижения скорости и силы трения, различия в диэлектрических свойствах материалов и повышения их электропроводимости. Уменьшение силы трения достигается смазкой, снижением шероховатости и площади контакта взаимодействующих поверхностей. Скорости трения ограничивают за счет снижения скоростей обработки и транспортировки материалов.

Так как заряды статического электричества образуются при плескании, распылении и разбрызгивании диэлектрических жидкостей, желательно эти процессы устранять или, по крайней мере, их огра­ничивать. Например, «наполнение диэлектрическими жидкостями резервуаров свободно падающей струёй не допускается. Сливной шланг необходимо опустить под уровень жидкости или, в крайнем случае, струю направить вдоль стенки, чтобы не было брызг».

Поскольку интенсивность образования зарядов тем выше, чем меньше электропроводность мате­риала, то желательно применять по возможности материалы с большей электропроводностью или повышать их электропроводность путем введения электропроводных (антистатических) присадок. Так, для покрытия полов нужно использовать антистатический линолеум, желательно периодически проводить антистатическую обработку ковров, ковровых материалов, синтетических тканей и материалов с использованием препаратов бытовой химии.

Соприкасающиеся предметы и вещества предпочтительнее изготовлять из одного и того же ма­териала, так как в этом случае не будет происхо­дить контактной электролизации. Например, полиэтиленовый порошок желательно хранить в полиэтиленовых бочках, а пересыпать и транспортировать по полиэтиленовым шлангам и трубопроводам. Если сделать это не представляется возможным, то применяют материалы, близкие по своим диэлектрическим свойствам. Например, электризация в паре фторопласт-полиэтилен меньше, нежели в паре фторопласт-эбонит.

Таким образом, для защиты от статического электричества необходимо применять слабоэлектризующиеся или неэлектризующиеся материалы, устранять или ограничивать трение, распыление, разбрызгивание, плескание диэлектрических жидкостей.

«Устранение зарядов статического электричества достигается прежде всего заземлением корпусов оборудования. Заземление для отвода статического электричества можно объединять с защитным заземлением электрооборудования. Если заземление используется только для снятия статического электричества, то его электрическое сопротивление может быть существенно больше, чем для защитного сопротивления электрооборудования (до 100 Ом). Достаточно даже тонкого провода, чтобы электрические заряды постоянно стекали в землю».

Для снятия статического электричества с кузова автомобиля применяют электропроводную полоску -- «антистатик», прикрепленную к днищу автомобиля. Если при выходе из автомобиля вы заметили, что кузов «искрит», разрядите кузов, прикоснувшись к нему металлическим предметом, например, ключом зажигания. Для человека это не опасно. Обязательно сделайте это, если собираетесь заправить машину бензином.

Самолеты снабжены металлическими тросиками, закрепленными на шасси и днищах фюзеляжа, что позволяет при посадке снимать с корпуса статические заряды, образовавшиеся в полете.

Для снятия электрических зарядов заземляются защитные экраны мониторов компьютеров. Бензозаправщики снабжаются заземлителями в виде цепей, постоянно контактирующих с землей при движении автомобиля. При сливе бензина в цистерны на бензозаправочной станции автомобиль-заправщик и система слива бензина обязательно заземляются дополнительно.

Влажный воздух имеет достаточную электропроводность, чтобы образующиеся электрические заряды стекали через него. Поэтому во влажной воздушной среде электростатических зарядов практически не образуется, и увлажнение воздуха является од­ним из наиболее простых и распространенных методов борьбы со статическим электричеством.

Еще один распространенный метод устранения электростатических зарядов -- ионизация воздуха. Образующиеся при работе ионизатора ионы нейтрализуют заряды статического электричества. Таким образом, бытовые ионизаторы воздуха не только улучшают аэроионный состав воздушной среды в помещении, но и устраняют электростатические заряды, образующиеся в сухой воздушной среде на коврах, ковровых синтетических покрытиях, одежде. На производстве используют специальные мощные ионизаторы воздуха различных конструкций, но наиболее распространены электрические ионизаторы.

В качестве индивидуальных средств защиты могут применяться антистатическая обувь, антистатические халаты, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.

Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изолированных проводниках.

Возникновение зарядов статического электричества происходит при деформации, дроблении веществ, относительном перемещении двух находящихся в контакте тел, слоев жидких и сыпучих материалов, при интенсивном перемешивании, кристаллизации, а также вследствие индукции.

Наиболее чувствительны к электростатическим полям нервная, сердечно-сосудистая, нейрогуморальная и другие системы организма. Это вызывает необходимость гигиенического нормирования предельно допустимой интенсивности электростатического поля.

Электростатическое поле характеризуется напряженностью, определяемой отношением силы, действующей в поле на точечный электрический заряд, к величине этого заряда. Единицей измерения напряженности является вольт на метр. Допустимый уровень напряженности электростатических полей - 60 кВ/м. в случае, если напряженность поля превышает это значение, должны применяться соответствующие средства защиты.

Понравилась статья? Поделитесь ей
Наверх