Генератор пилообразного напряжения. Электронные генераторы пилообразного напряжения. Генераторы пилообразного напряжения Генератор пилы на транзисторах

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Аналоговый генератор с пассивным интегратором (пилообразного напряжения) представляет собой низкочастотный генератор повторяющихся сигналов, линейно нарастающих во времени с периодическим сбросом до нуля или минимального уровня. Состоит из конденсатора с линейным зарядом от источника постоянного напряжения и усилителя выходного сигнала. Схема генератора пилообразного напряжения пассивным интегратором, ведомого синхроимпульсами, показана на рис. 2.51, а , диаграмма изменения сигналов показана на рис. 2.52, а.

Рис. 2.51. Схемы аналоговых ГПН: а - с пассивным интегратором; б - с активным интегратором



Рис. 2.52. Диаграммы преобразования сигналов аналоговыми ГПН: а - с пассивным интегратором; б - с активным интегратором

Заряд конденсатора С1 происходит от источника питания +15 В через резистор R3 по экспоненциальному закону:

Сброс пилообразного напряжения производится транзистором VT1, отпираемым синхроимпульсом м си. Постоянная времени цепи заряда конденсатора С1 выбирается так, чтобы использовать линейную часть функции изменения напряжения заряда (R3C1

Отрицательное смещение характеристики усилителя DA1 (цепь резистора R4) обеспечивает компенсацию падения напряжения Щ на эмиттер-коллекторном переходе транзистора VT1. Требуемая амплитуда пилообразного напряжения U njl устанавливается коэффициентом усиления выходного усилителя DA1. Подобные генераторы используются в блоках фазового управления БФУ-535 (БУВИП-133) и БРФ-176 (БУРТ-16) электровозов переменного тока ВЛ85, ВЛ80С.

Аналоговый генератор с активным интегратором предназначен для автоматического управления тиристорным импульсным преобразователем напряжения с широтно-импульсной модуляцией. Схема генератора, ведомого синхроимпульсами, показана на рис. 2.51, б, а диаграмма изменения его сигналов - на рис. 2.52, б. Входной усилитель DA1 является компаратором с инверсной характеристикой переключения и положительным смещением. При положительном уровне выходного напряжения компаратора DA1 усилитель DA2 интегрирует это напряжение, формируя сигнал пилообразного вида. При подаче синхроимпульса на инвертирующий вход усилителя DA1 его выходное напряжение переключается с положительного уровня на отрицательный, сбрасывая пилообразный сигнал до уровня, близкого к нулю.

Напряжение на выходе усилителя DA2 линейно нарастает при отрицательном уровне, так как усилитель DA2 инвертирует входной сигнал. Необходимая амплитуда пилообразного напряжения устанавливается величиной входного резистора R5:

При отрицательном импульсе входного напряжения усилителя DA2 происходит переключение сопротивления входного резистора диодом VD1 на малую величину R4«R5, при которой постоянная времени интегратора существенно уменьшается, обеспечивая быстрый сброс выходного напряжения. Диод VD2 в обратной связи усилителя DA2 ограничивает выходное напряжение на уровне порогового напряжения диода Щ.

При переключении входного сигнала DA2 на положительный уровень постоянная времени интегратора изменяется на большую величину, когда входное напряжение превышает пороговое напряжение обоих диодов. При этом выходное напряжение генератора скачком возрастает на величину 2 t/ Q .

Цифровой генератор пилообразного напряжения состоит из триггерного счетчика тактовых импульсов DD1, цифроаналогового преобразователя в виде резисторного цепного делителя напряжения и выходного аналогового усилителя DA1. Схема четырехразрядного цифрового генератора пилообразного напряжения показана на рис. 2.53.


Рис. 2.53.

Диаграмма изменения сигналов генератора пилообразного напряжения показана на рис. 2.54. На каждый такт генератора тактовых импульсов -П-С выходное напряжение усилителя DA1 дискретно увеличивается на Vj6 максимального выходного напряжения усилителя DA1. Необходимая амплитуда пилообразного напряжения U njl устанавливается посредством коэффициента усиления выходного усилителя DA1. Сброс пилообразного напряжения производится мгновенно на 16-й такт при обнулении триггерного счетчика DD1. После обнуления процесс дискретного нарастания вы-


ходного напряжения повторяется. Изменение частоты следования сигналов пилообразного напряжения можно выполнить только посредством изменения частоты тактовых сигналов С, подаваемых на вход генератора.

  • Генераторы могут работать в режиме самовозбуждения или ждущем режиме, когда период следования импульсов пилообразного напряжения определяется запускающими импульсами.

    Пилообразным напряжением называют электрические колебания (импульсы), которые вырабатываются посредством преобразования энергии источника постоянного тока в энергию электрических колебаний.

    Напряжение пилообразной формы - это напряжение, которое в течение определенного времени нарастает или убывает пропорционально времени (линейно), а затем возвращается к исходному уровню (рис. 1).

  • Рис. 1. Параметры ПН

    Пилообразное напряжение может быть линейно нарастающим или линейно падающим и характеризуется основными параметрами:

    Длительностями прямого (рабочего) и обратного хода

    Амплитудой выходного напряжения

    Период повторения Т

    Начальный уровень U 0

    Коэффициент нелинейности E, характеризующий степень отклонения реального пилообразного напряжения, от напряжения изменяющегося по линейному закону.

  • V max = при t=0 и V min = при t= t пр – скорости изменения пилообразного напряжения соответственно в начале и в конце прямого хода.

    Независимо от практической реализации все типы ГПН можно представить в виде единой эквивалентной схемы (рис.2)

    В нее входит источник питания E, зарядный резистор R, который можно рассматривать как внутреннее сопротивление источника питании, конденсатор С – накопитель энергии, электронный ключ К и разрядный резистор r сопротивлением, равным внутреннему сопротивлению замкнутого ключа.

  • Рис. 2. Эквивалентная схема ГПН

  • В исходном состоянии ключ К замкнут и на конденсаторе устанавливается начальный уровень напряжения

  • При размыкании ключа конденсатор начинает разряжаться через разрядный резистор r и напряжение на нем меняется по экспоненциальному закону

    ,

    где
    - постоянная времени цепи зарядки конденсатора.

    В настоящее время ГПН с малым значением коэффициента нелинейности и его незначительной зависимостью от сопротивления нагрузки создают на основе интегральных усилителей.

    Генератор на основе ОУ как правило строятся по схеме интегратора (для малых коэффициентов нелинейности и низкоомной нагрузкой).

    Предлагаемая схема и диаграммы ее работы имеют вид рис.2:

  • В этой схеме выходное напряжение представляет собой усиленное операционным усилителем напряжение на конденсаторе С. ОУ охвачен как (R1, R2, источник Е 0), так и (R3, R4, источник Е 3). Управление работой ГПН осуществляется с помощью транзистора VT1

    Управление работой ГПН осуществляется при помощи ключевого устройства (КУ) на транзисторе VT 1 .

    Ключевое устройство может быть реализовано на биполярном транзисторе, управляемый импульсами положительной полярности.

    Транзистор (КУ) насыщен (открыт) при положительных полупериодах U вх, а при отрицательных находится в режиме отсечки (закрыт), при этом фронт пилообразных напряжений будет формироваться в момент времени действие отрицательного импульса на входе (КУ). В паузах между входными импульсами транзистор закрыт, и конденсатор заряжается током от источникаE. и резистор R3.

    Напряжение , образуемое на конденсаторе, поступает на неинвертирующий вход операционного усилителя, работающего в линейном режиме с коэффициентом усиления по неинвертирующему входу

    В результате на выходе усилителя создается напряжение
    , а на резистореR4 – напряжение, равное

    ,

    которое создает ток , протекающий через конденсатор в том же направлении, что и ток.

    Следовательно, ток зарядки конденсатора в паузах между входными импульсами равен

    .

    По мере зарядки конденсатора ток уменьшается, а напряжение на конденсаторе и на входе операционного усилителя увеличиваются. Если коэффициент усиления по инвертирующему входу больше единицы, то напряжение на резистореR4 и протекающий через него ток также увеличиваются. При подборе коэффициента усиления можно обеспечить высокую линейность пилообразного напряжения.

  • Работа гпн.

  • Рассмотрим работу ГПН на примере нашей схемы для формирования требуемой длительности обратного хода дополним эммитерную цепь транзистора VT 1 сопротивлением R6. Сопротивление R5 ограничивает ток базы транзистора в режиме насыщения. Рассмотрим процессы происходящие в данной схеме. Пусть на входе действует импульс длительности , приводящий к отпиранию транзистора. При условии, незначительного падения напряжения на открытых переходах транзистора, напряжение на конденсаторе в начальный момент времени, приближенно равно падению на сопротивленииR6

    . (1)

    В силу обратной связи, ток коллектора транзистора равен

    . (2)

  • В свою очередь, токи через соответствующие сопротивления определяются выражениями

    ,
    . (3)

    Амплитуда управляющего импульса должна быть больше величины

    . (4)

    При этом на выходе схемы имеется постоянный уровень напряжения равный

    . (5)

    В момент времени транзистор запирается, и конденсатор начинает заряжаться. Процессы, протекающие в схеме, описываются следующими уравнениями

    ,

    ,

    . (6)

    Из (6) получаем

  • Введем обозначения
    ,
    ,
    , тогда полученное уравнение можно переписать в виде

    . (7)

    Это неоднородное дифференциальное уравнение первого порядка, решение которого имеет вид

    . (8)

    Постоянную интегрирования найдем из начальных условий (1). Т.к. в начальный момент времени
    , то
    , следовательно, (8) можно записать, как

    .

      Тогда напряжение на выходе будет меняться по закону

      (9)

      Здесь
      имеет тот же смысл, что и ранее.

      Поскольку напряжение на выходе системы через время рабочего хода должно равняться величине
      , где
      - амплитуда пилообразного напряжения, то, решая (9) относительно времени, получим

      . (10)

      Аналогично для цепи разряда, принимая во внимание что
      и
      .

    1. Расчет схемы.

    2. Для правильной работы схемы требуется, чтобы коэффициент усиления по инвертирующему входу был больше единицы. Пусть
      , выберем резисторR2 на номинал 20 кОм, тогда R1= 10 кОм.

      Рассчитаем коэффициент усиления по неинвертирующему входу .

      Требуется обеспечить коэффициент нелинейность 0,3 % , тогда постоянная времени заряда конденсатора должна быть не меньше величины

    3. Тогда напряжение на выходе будет менятся по закону:

    4. ,

      Так если задать
      В, то
      = 1067

      тогда К = = = 0,014 при условии напряжения питания в цепи транзистора 15 В.

      Принимая во внимание полученные ранее обозначения, рассчитаем сопротивление соотношение сопротивлений R3 и R4

      .

      Зададимся сопротивлением в цепи коллектора транзистора R3 = 10 кОм, тогда получаем, что R4 = 20 кОм.

      В свою очередь с, следовательно, емкость конденсатора составит порядка 224 пФ, выбираем 220 пФ.

      Перейдем к расчету цепи разряда. Для цепи разряда справедливо

      . (13)

      Подставим в (13) формулы из (11), разрешим относительно R6, получим

      .

      Откуда следует, при подстановке численных значений, что R6 = 2 мОм.

      Получим выражение для времени обратного хода

      , (11)

      где
      ,
      ,
      .

      Если выражение (9) продифференцировать по времени и умножить на С1, то коэффициент нелинейности напряжения, будет определяться формулой

      t p /,где =RC

      Исходя из проведенных исследований, перейдем к расчету параметров и выбору элементов схемы.

      Ток, протекающий в момент, когда транзистор открывается, через сопротивление R6 оценим исходя из следующих рассуждений. В момент переключения все напряжение на конденсаторе приложено к сопротивлению, поэтому через него потечет ток
      мкА.

      В качестве ключа можно использовать транзистор с подходящими параметрами типа КТ342Б. Резистор R5, ограничивающий ток базы, выберем порядка 1 кОм. Поскольку максимальный ток коллектора 50 мА, а коэффициент усиления по току 200, то ток насыщения базы будет равен 250 мкА, следовательно на резисторе напряжение составит 0,25 В. Примем напряжение насыщения база-эммитер – 1 В. Падение напряжения на сопротивлении R6, при максимальном токе протекающем через R3 и R4 добавленному к R6 составит 6,08 В. Таким образом, для надежного отпирания транзистора и его удержания в открытом состоянии требуется импульс амплитудой 8 В.


    Продолжая тему электронных конструкторов я хочу и в этот раз рассказать о одном из устройств для пополнения арсенала измерительных приборов начинающего радиолюбителя.
    Правда измерительным это устройство не назовешь, но то что оно помогает при измерениях это однозначно.

    Довольно часто радиолюбителю, да и не только, приходится сталкиваться с необходимостью проверки разных электронных устройств. Это бывает как на этапе отладки, так и на этапе ремонта.
    Для проверки бывает необходимо проследить прохождение сигнала по разным цепям устройства, но само устройство не всегда позволяет это сделать без внешних источников сигнала.
    Например при настройке/проверке многокаскадного НЧ усилителя мощности.

    Для начала стоит немного объяснить о чем пойдет речь в данном обзоре.
    Рассказать я хочу о конструкторе, позволяющим собрать генератор сигналов.

    Генераторы бывают разные, например ниже тоже генераторы:)

    Но собирать мы будем генератор сигналов. Я много лет пользуюсь стареньким аналоговым генератором. В плане генерации синусоидальных сигналов он очень хорош, диапазон частот 10-100000Гц, но имеет большие габариты и не умеет выдавать сигналы других форм.
    В данном случае же собирать будем DDS генератор сигналов.
    DDS это или на русском - схема прямого цифрового синтеза.
    Данное устройство может формировать сигналы произвольной формы и частоты используя в качестве задающего внутренний генератор с одной частотой.
    Преимущества данного типа генераторов в том, что можно иметь большой диапазон перестройки с очень мелким шагом и при необходимости иметь возможность формирования сигналов сложных форм.

    Как всегда, для начала, немного об упаковке.
    Помимо стандартной упаковки, конструктор был упакован в белый плотный конверт.
    Все компоненты сами находились в антистатическом пакете с защелкой (довольно полезная в хозяйстве радиолюбителя вещь:))

    Внутри упаковки компоненты были просто насыпом, и при распаковке выглядели примерно так.

    Дисплей был обернут пупырчатым полиэтиленом. Примерно с год назад я уже делал такого дисплея с применением, потому останавливаться на нем не буду, скажу лишь что доехал он без происшествий.
    В комплекте также присутствовали два BNC разъема, но более простой конструкции чем в обзоре осциллографа.

    Отдельно на небольшом кусочке вспененного полиэтилена были микросхемы и панельки для них.
    В устройстве применен микроконтроллер ATmega16 фирмы Atmel.
    Иногда люди путают названия, называя микроконтроллер процессором. На самом деле это разные вещи.
    Процессор это по сути просто вычислитель, микроконтроллер же в своем составе содержит кроме процессора ОЗУ и ПЗУ, и также могут присутствовать различные периферийные устройства, ЦАП, АЦП, ШИМ контроллер, компараторы и т.п.

    Вторая микросхема - Сдвоенный операционный усилитель LM358. Самый обычный, массовый, операционный усилитель.

    Сначала разложим весь комплект и посмотрим что же нам дали.
    Печатная плата
    Дисплей 1602
    Два BNC разъема
    Два переменных резистора и один подстроечный
    Кварцевый резонатор
    Резисторы и конденсаторы
    Микросхемы
    Шесть кнопок
    Разные разъемы и крепеж

    Печатная плата с двухсторонней печатью, на верхней стороне нанесена маркировка элементов.
    Так как принципиальная схема в комплект не входит, то на плату нанесены не позиционные обозначения элементов, а их номиналы. Т.е. все собрать можно и без схемы.

    Металлизация выполнена качественно, замечаний у меня не возникло, покрытие контактных площадок отличное, паяется легко.

    Переходы между сторонами печати сделаны двойными.
    Почему сделано именно так, а не как обычно, я не знаю, но это только добавляет надежности.

    Сначала по печатной плате я начал чертить принципиальную схему. Но уже в процессе работы я подумал, что наверняка при создании данного конструктора использовалась какая нибудь уже известная схема.
    Так и оказалось, поиск в интернет вывел меня на данного устройства.
    По ссылке можно найти, схему, печатную плату и исходники с прошивкой.
    Но я все равно решил дочертить схему в именно том виде как она есть и могу сказать, что она на 100% соответствует исходному варианту. Разработчики конструктора просто разработали свой вариант печатной платы. Это означает, что если существуют альтернативные прошивки данного прибора, то они будут работать и здесь.
    Есть замечание к схемотехнике, выход HS взят прямо с вывода процессора, никаких защит нет, потому есть шанс случайно сжечь этот выход:(

    Раз уж рассказывать, то стоит описать функциональные узлы данной схемы и расписать некоторые из них более расширенно.
    Я сделал цветной вариант принципиальной схемы, на котором цветом выделил основные узлы.
    Мне тяжело подобрать названия цветам, потом буду описывать как смогу:)
    Фиолетовый слева - узел первоначального сброса и принудительного при помощи кнопки.
    При подаче питания конденсатор С1 разряжен, благодаря чему на выводе Сброс процессора будет низкий уровень, по мере заряда конденсатора через резистор R14 напряжение на входе Сброс поднимется и процессор начнет работу.
    Зеленый - Кнопки переключения режимов работы
    Светло фиолетовый? - Дисплей 1602, резистор ограничения тока подсветки и подстроечный резистор регулировки контрастности.
    Красный - узел усилителя сигнала и регулировки сдвига относительно нуля (ближе к концу обзора показано что он делает)
    Синий - ЦАП. Цифро Аналоговый Преобразователь. Собран ЦАП по схеме , это один из самых простых вариантов ЦАП. В данном случае применен 8 бит ЦАП, так как используются все выводы одного порта микроконтроллера. Изменяя код на выводах процессора можно получить 256 уровней напряжения (8 бит). Состоит данный ЦАП из набора резисторов двух номиналов, отличающихся друг от друга в 2 раза, от этого и пошло название, состоящее из двух частей R и 2R.
    Преимущества такого решения - большая скорость при копеечной стоимости, резисторы лучше применять точные. Мы с товарищем применяли такой принцип но для АЦП, выбор точных резисторов был невелик, потому мы использовали немного другой принцип, ставили все резисторы одного номинала, но там где надо 2R, применяли 2 последовательно включенных резистора.
    Такой принцип Цифро аналогового преобразования был в одной из первых «звуковых карт» - . Там была также R2R матрица, подключаемая к LPT порту.
    Как я выше писал, в данном конструкторе ЦАП имеет разрешение 8 бит, или 256 уровней сигнала, для простого прибора этого более чем достаточно.

    На странице автора кроме схемы, прошивки и т.п. обнаружилась блок-схема данного прибора.
    По ней более понятная связ узлов.

    С основной частью описания закончили, расширенная будет далее по тексту, а мы перейдем непосредственно к сборке.
    Как и в прошлых примерах начать я решил с резисторов.
    В данном конструкторе резисторов много, но номиналов всего несколько.
    Основное количество резисторов имеют всего два номинала, 20к и 10к и почти все задействованы в R2R матрице.
    Чтобы немного облегчить сборку, скажу что можно даже не определять их сопротивелние, просто 20к резисторов 9 штук, а 10к резисторов соответственно 8:)

    В этот раз я применил несколько другую технологию монтажа. мне она нравится меньше, чем предыдущие, но также имеет право на жизнь. Такая технология в некоторых случаяюх ускоряет монтаж, особенно на большом количестве одинаковых элементов.
    В данном случае выводы резисторов формуются также как и раньше, после этого на плату устанавливается сначала все резисторы одного номинала, потом второго, получаются две такие линейки компонентов.

    С обратной стороны выводы немного загибаются, но несильно, главное чтобы элементы не выпали, и плата кладется на стол выводами вверх.

    Дальше берем припой в одну руку, паяльник в другую и пропаиваем все заполненные контактные площадки.
    Сильно усердствовать с количеством компонентов не стоит, так как если набить так сразу всю плату, то в этом «лесу» можно и заблудиться:)

    В конце обкусываем торчащие выводы компонентов впритык к припою. Бокорезами можно захватывать сразу несколько выводов (4-5-6 штук за один раз).
    Лично я такой способ монтажа не очень приветствую и показал его просто ради демонстрации различных вариантов сборки.
    Из недостатков такого способа:
    После обрезки получаются острые торчащие кончики
    Если компоненты стоят не в ряд, то легко получается каша из выводов, где все начинает путаться и это только тормозит работу.

    Из достоинств:
    Высокая скорость монтажа однотипных компонентов установленных в один - два ряда
    Так как выводы сильно не загибаются, то облегчается демонтаж компонента.

    Такой способ монтажа можно часто встретить в дешевых компьютерных блоках питания, правда там выводы не обкусывают, а срезают чем то типа режущего диска.

    После монтажа основного количества резисторов у нас останется несколько штук разного номинала.
    С парой понятно, это два резистора 100к.
    Три последних резистора это -
    коричневый - красный - черный - красный - коричневый - 12к
    красный - красный - черный - черный - коричневый - 220 Ом.
    коричневый - черный - черный - черный - коричневый - 100 Ом.

    Запаиваем последние резисторы, плата после этого должна выглядеть примерно так.

    Резисторы с цветовой маркировкой вещь хорошая, но иногда возникает путаница с тем, откуда считать начало маркировки.
    И если с резисторами, где маркировка состоит из четырех полосок, проблем обычно не возникает, так как последняя полоска чаще либо серебряная либо золотая, то с резисторами где маркировка из пяти полос, могут возникнуть проблемы.
    Дело в том, что последняя полоса может иметь цвет как у полосок означающих номинал.

    Для облегчения распознавания маркировки, последняя полоса должна отстоять от остальных, но это в идеальном случае. В реальной же жизни все бывает совсем не так как задумывалось и полоски идут в ряд на одном расстоянии друг от друга.
    К сожалению в таком случае помочь может либо мультиметр, либо просто логика (в случае сборки устройства из набора), когда просто убираются все известные номиналы, а уже по оставшимся можно понять что за номинал перед нами.
    Для примера пара фото вариантов маркировки резисторов в этом наборе.
    1. На двух соседних резисторов попалась «зеркальная» маркировка, где не имеет значения откуда читать номинал:)
    2. Резисторы на 100к, видно что последняя полоска стоит чуть дальше от основных (на обоих фото номинал читается слева - направо).

    Ладно, с резисторами и их сложностями в маркировке закончили, перейдем к более простым вещам.
    Конденсаторов в этом наборе всего четыре, при этом они парные, т.е. всего два номинала по две штуки каждого.
    Также в комплекте дали кварцевый резонатор на 16 МГц.

    О конденсаторах и кварцевом резонаторе я рассказывал в прошлом обзоре, потому просто покажу куда они должны устанавливаться.
    Видимо изначально все конденсаторы задумывались одного типа, но конденсаторы на 22 пФ заменили небольшими дисковыми. Дело в том, что место на плате рассчитано под расстояние между выводами 5мм, а мелкие дисковые имеют всего 2.5мм, потому придется выводы им немного разогнуть. Разгибать придется около корпуса (благо выводы мягкие), так как из-за того что над ними стоит процессор, то необходимо получить минимальную высоту над платой.

    В комплекте к микросхемам дали пару панелек и несколько разъемов.
    На следующем этапе они нам и понадобятся, а кроме них возьмем длинный разъем (мама) и четырехконтактного «папу» (на фото не попал).

    Панельки для установки микросхем дали самые обычные, хотя если сравнивать с панельками времен СССР, то шик.
    На самом деле, как показывает практика, такие панельки в реальной жизни служат дольше самого прибора.
    На панельках присутствует ключ, небольшой вырез на одной из коротких сторон. Собственно самой панельке все равно как вы ее поставите, просто потом по вырезу удобнее ориентироваться при установке микросхем.

    При установке панелек устанавливаем их также как сделано обозначение на печатной плате.

    После установки панелек плата начинает приобретать некоторый вид.

    Управление прибором производится при помощи шести кнопок и двух переменных резисторов.
    В оригинале прибора использовалось пять кнопок, шестую добавил разработчик конструктора, она выполняет функцию сброса. Если честно, то я не совсем понимаю пока ее смысл в реальном применении так как за все время тестов она мне ни разу не понадобилась.

    Выше я писал что в комплекте дали два переменных резистора, также в комплекте еще был подстроечный резистор. Немного расскажу про эти компоненты.
    Переменные резисторы предназначены для оперативного изменения сопротивления, кроме номинала имеют еще маркировку функциональной характеристики.
    Функциональная характеристика это то, как будет меняться сопротивление резистора при повороте ручки.
    Существует три основные характеристики:
    А (в импортном варианте В) - линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
    Б (в импортном варианте С) - логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
    В (в импортном варианте A) - обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
    Дополнительный тип - W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
    Кому интересно, могут почитать подробнее.
    Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении. Если есть сомнения, то лучше искать дополнительную информацию на сайте.
    В комплекте к конструктору дали два переменных резистора, причем маркировку имел только один:(

    Также в комплекте был один подстроечный резистор. по своей сути это то же самое что переменный, только он не рассчитан на оперативную регулировку, а скорее - подстроил и забыл.
    Такие резисторы обычно имеют шлиц под отвертку, а не ручку, и только линейную характеристику изменения сопротивления (по крайней мере другие мне не попадались).

    Запаиваем резисторы и кнопки и переходим к BNC разъемам.
    Если планируется использовать устройство в корпусе, то возможно стоит купить кнопки с более длинным штоком, чтобы не наращивать те, что дали в комплекте, так будет удобнее.
    А вот переменные резисторы я бы вынес на проводах, так как расстояние между ними очень маленькое и пользоваться в таком виде будет неудобно.

    BNC разъемы хоть и попроще, чем в обзоре осциллографа, но мне понравились больше.
    Ключевое - их легче паять, что немаловажно для начинающего.
    Но появилось и замечание, конструкторы так близко поставили разъемы на плате, что закрутить две гайки невозможно в принципе, всегда одна будет сверху другой.
    Вообще в реальной жизни редко когда необходимы оба разъема сразу, но если бы конструкторы раздвинули их хотя бы на пару миллиметров, то было бы гораздо лучше.

    Собственно пайка основной платы завершена, теперь можно установить на свое место операционный усилитель и микроконтроллер.

    Перед установкой я обычно немного изгибаю выводы так, чтобы они были ближе к центру микросхемы. Делается это очень просто, берется микросхема двумя руками за короткие стороны и прижимается вертикально стороной с выводами к ровному основанию, например к столу. Изгибать выводы надо не очень много, тут скорее дело привычки, но устанавливать в панельку потом микросхему гораздо удобнее.
    При установке смотрим чтобы выводы случайно не загнулись внутрь, под микросхему, так как при отгибании обратно они могут отломиться.

    Микросхемы устанавливаем в соответствии ключом на панельке, которая в свою очередь установлена в соответствии с маркировкой на плате.

    Закончив с платой переходим к дисплею.
    В комплекте дали штыревую часть разъема, который необходимо припаять.
    после установки разъема я сначала припаиваю один крайний вывод, не важно красиво он припаян или нет, главное добиться того, чтобы разъем стоял плотно и перпендикулярно плоскости платы. Если необходимо, то прогреваем место пайки и подравниваем разъем.
    После выравнивания разъема пропаиваем остальные контакты.

    Все, можно промывать плату. В этот раз я это решил сделать до проверки, хотя обычно советую делать промывку уже после первого включения, так как иногда приходится еще что нибудь паять.
    Но как показала практика, с конструкторами все гораздо проще и после сборки паять приходится редко.

    Промывать можно разными способами и средствами, кто то использует спирт, кто то спирто-бензиновую смесь, я мою платы ацетоном, по крайней мере пока могу его купить.
    Уже когда промыл, то вспомнил совет из предыдущего обзора по поводу щетки, так как я пользуюсь ваткой. Ничего, придется перенести эксперимент на следующий раз.

    У меня в работе вработалась привычка после промывки платы покрывать ее защитным лаком, обычно снизу, так как попадание лака на разъемы недопустимо.
    В работе я использую лак Пластик 70.
    Данный лак очень «легкий», т.е. он при необходимости смывается ацетоном и пропаивается паяльником. Есть еще хороший лак Уретан, но с ним все заметно сложнее, он прочнее и паяльником пропаять его гораздо труднее. ТАкой лак используется для тяжелых условий эксплуатации и тогда, когда есть уверенность в том, что плату паять больше не будем, хотя бы какое то длительное время.

    После покрытия лаком плата становится более глянцевой и приятной на ощупь, возникает некоторое ощущение законченности процесса:)
    Жалко фото не передает общую картину.
    Меня иногда смешили слова людей типа - этот магнитофон/телевизор/приемник ремонтировали, вон видно следы пайки:)
    При хорошей и правильной пайке следов ремонта нет. Только специалист сможет понять, ремонтировали устройство или нет.

    Пришла очередь установки дисплея. Для этого в комплекте дали четыре винтика М3 и две монтажные стойки.
    Дисплей крепится только со стороны обратной разъему, так как со стороны разъема он держится собственно за сам разъем.

    Устанавливаем стойки на основную плату, затем устанавливаем дисплей, ну и в конце фиксируем всю эту конструкцию при помощи двух оставшихся винтиков.
    понравилось то, что даже отверстия совпали с завидной точностью, причем без подгонки, просто вставил и вкрутил винтики:).

    Ну все, можно пробовать.
    Подаю 5 Вольт на соответствующие контакты разъема и…
    И ничего не происходит, только включается подсветка.
    Не стоит пугаться и сразу искать решение на форумах, все нормально, так и должно быть.
    Вспоминаем что на плате есть подстроечный резистор и он там не зря:)
    Данным подстроечным резистором надо отрегулировать контрастность дисплея, а так как он изначально стоял в среднем положении, то вполне закономерно, что мы ничего не увидели.
    Берем отвертку и вращаем этот резистор добиваясь нормального изображения на экране.
    Если сильно перекрутить, то будет переконтраст, мы увидим все знакоместа сразу, а активные сегменты будут еле просматриваться, в этом случае просто крутим резистор в обратную сторону пока неактивные элементы не сойдут почти на нет.
    Можно отрегулировать так, что неактивные элементы вообще не будут видны, но я обычно оставляю их еле заметными.

    Дальше мне бы перейти к тестированию, да не тут то было.
    Когда я получил плату, то первым делом заметил, что помимо 5 Вольт ей надо +12 и -12, т.е. всего три напряжения. Я прям вспомнил РК86, где надо было +5, +12 и -5 Вольт, причем подавать их надо было в определенной последовательности.

    Если с 5 Вольт проблем не было, да и с +12 Вольт также, то -12 Вольт стали небольшой проблемой. Пришлось сделать небольшой временный блок питания.
    Ну в процессе была классика, поиск по сусекам того из чего можно его собрать, трассировка и изготовление платы.

    Так как трансформатор у меня был только с одной обмоткой, а импульсник городить не хотелось, то я решил собирать БП по схеме с удвоением напряжения.
    Скажу честно, это далеко не самый лучший вариант, так как такая схема имеет довольно высокий уровень пульсаций, а запаса по напряжению, чтобы стабилизаторы могли его полноценно фильтровать у меня было совсем впритык.
    Сверху та схема по которой делать более правильно, снизу та, по которой делал я.
    Отличие между ними в дополнительной обмотке трансформатора и двух диодах.

    Я поставил также почти без запаса. Но при этом он достаточен при нормально сетевом напряжении.
    Я бы рекомендовал применить трансформатор как минимум на 2 ВА, а лучше на 3-4ВА и имеющий две обмотки по 15 Вольт.
    Кстати потребление платы небольшое, по 5 Вольт вместе с подсветкой ток составляет всего 35-38мА, по 12 Вольт ток потребления еще меньше, но зависит от нагрузки.

    В итоге у меня вышла небольшая платка, по размерам чуть больше спичечного коробка, в основном в высоту.

    Разводка платы на первый взгляд может показаться несколько странной, так как можно было повернуть трансформатор на 180 градусов и получить более аккуратную разводку, я так сначала и сделал.
    Но в таком варианте выходило, что дорожки с сетевым напряжением оказывались в опасной близости от основной платы прибора и я решил немного изменить разводку. не скажу что стало отлично, но по крайней мере так хоть немного безопаснее.
    Можно убрать место под предохранитель, так как с примененным трансформатором в нем нет особой нужды, тогда будет еще лучше.

    Так выглядит полный комплект прибора. для соединения БП с платой прибора я спаял небольшой жесткий соединитель 4х4 контакта.

    Плата БП подключается при помощи соединителя к основной плате и теперь можно переходить к описанию работы прибора и тестированию. Сборка на этом этапе окончена.
    Можно было конечно поставить все это в корпус, но для меня такой прибор скорее вспомогательный, так как я уже смотрю в сторону более сложных DDS генераторов, но и стоимость их не всегда подойдет новичку, потому я решил оставить как есть.

    Перед началом тестирования опишу органы управления и возможности устройства.
    На плате есть 5 кнопок управления и кнопка сброса.
    Но по поводу кнопки сброса думаю все понятно и так, а остальные я опишу более подробно.
    Стоит отметить небольшой «дребезг» при переключении правой/левой кнопки, возможно программный «антидребезг» имеет слишком маленькое время, проявляется в основном только в режиме выбора частоты выхода в режиме HS и шага перестройки частоты, в остальных режимах проблем не замечено.
    Кнопки вверх и вниз переключают режимы работы прибора.
    1. Синусоидальный
    2. Прямоугольный
    3. Пилообразный
    4. Обратный пилообразный

    1. Треугольный
    2. Высокочастотный выход (отдельный разъем HS, остальные формы приведены для выхода DDS)
    3. Шумоподобный (генерируется случайным перебором комбинаций на выходе ЦАП)
    4. Эмуляция сигнала кардиограммы (как пример того, что генерировать можно любые формы сигналов)

    1-2. Изменять частоту на выходе DDS можно в диапазоне 1-65535ГЦ с шагом 1Гц
    3-4. Отдельно есть пункт, позволяющий выбрать шаг перестройки, по умолчанию включается шаг 100Гц.
    Изменять частоту работы и режимы можно только в режиме, когда генерация выключена., изменение происходит при помощи кнопок влево/вправо.
    Включается генерация кнопкой START.

    Также на плате расположены два переменных резистора.
    Один из них регулирует амплитуду сигнала, второй - смещение.
    На осциллограммах я попытался показать как это выглядит.
    Верхние две - изменение уровня выходного сигнала, нижние - регулировка смещения.

    Дальше пойдут результаты тестов.
    Все сигналы (кроме шумоподобного и ВЧ) проверялись на четырех частотах:
    1. 1000Гц
    2. 5000Гц
    3. 10000Гц
    4. 20000Гц.
    На частотах выше был большой завал потому эти осциллограммы приводить не имеет особого смысла.
    Для начала синусоидальный сигнал.

    Пилообразный

    Обратный пилообразный

    Треугольный

    Прямоугольный с выхода DDS

    Кардиограмма

    Прямоугольный с ВЧ выхода
    Здесь предоставляется выбор только из четырех частот, их я и проверил
    1. 1МГц
    2. 2МГц
    3. 4МГц
    4. 8МГц

    Шумоподобный в двух режимах развертки осциллографа, чтобы было более понятно что он из себя представляет.

    Как показало тестирование, сигналы имеют довольно искаженную форму начиная примерно с 10КГц. Сначала я грешил на упрощенный ЦАП, да и на саму простоту реализации синтеза, но захотелось проверить более тщательно.
    Для проверки я подключился осциллографом прямо на выход ЦАП и установил максимально возможную частоту синтезатора, 65535Гц.
    Здесь картина получше, особенно с учетом того, что генератор работал на максимальной частоте. Подозреваю что виной простая схема усиления, так как до ОУ сигнал заметно «красивее».

    Ну и групповое фото небольшого «стенда» начинающего радиолюбителя:)

    Резюме.
    Плюсы
    Качественное изготовление платы.
    Все компоненты были в наличии
    Никаких сложностей при сборке не возникло.
    Большие функциональные возможности

    Минусы
    BNC разъемы стоят слишком близко друг к другу
    Нет защиты по выходу HS.

    Мое мнение. Можно конечно сказать что характеристики прибора совсем плохие, но стоит учитывать то, что это DDS генератор самого начального уровня и не совсем правильно было бы ожидать от него чего то большего. Порадовала качественная плата, собирать было одно удовольствие, не было ни одного места, которое пришлось «допиливать». В виду того, что прибор собран по довольно известной схеме, есть надежда на альтернативные прошивки, которые могут увеличить функционал. С учетом всех плюсов и минусов я вполне могу рекомендовать этот набор как стартовый для начинающих радиолюбителей.

    Фух, вроде все, если накосячил где то, пишите, исправлю/дополню:)

    Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

    Планирую купить +47 Добавить в избранное Обзор понравился +60 +126

    Кадровая развертка. Задающий генератор пилообразного напряжения (рис. 11.4) собран на транзисторах VT1 и VT2. При включения питающего напряжения конденсаторы С1 и С2 заряжа­ются. Через базовые цепи транзисторов протекают токи, которые выводят транзисторы в режим насыщения. Спустя некоторое время зарядный ток конденсаторов уменьшится и достигнет такого значе­ния, при котором один из транзисторов выйдет из насыщения. Изменение напряжения в цепи коллектора транзистора VT1 закроет транзистор VT2. В результате конденсатор С1, включенный в цепь ООС, будет медленно разряжаться через коллекторную цепь тран­зистора VT1. Так как отрицательно заряженная обкладка конден­сатора С1 подключена к базе транзистора VT1, при разряде конденсатора уменьшается ток базы и в результате автоматически уста­навливается такое соотношение между токами коллектора и базы, которое точно равно коэффициенту передачи тока транзистора. За все время разряда конденсатора ток базы и напряжение на базе меняются незначительно. Ток через резисторы R1 и R2 остается постоянным и не зависит от процессов, протекающих в устройстве. Таким образом, во время прямого хода в генераторе имеется глубо­кая ООС, поддерживающая постоянным ток разряда конденсатора С1, а следовательно, и высокую линейность пилообразного напря­жения. Поскольку коэффициент передачи тока транзистора меняет­ся в зависимости от приложенного напряжения (в первоначальный момент на 1 - 2%), то и нелинейность сигнала будет характеризо­ваться таким же значением. Процесс разряда конденсатора прекра­щается при таких напряжениях на коллекторе, которые требуют для управления током коллектора значительного увеличения тока базы. Коэффициент передачи тока транзистора резко падает. В этом слу­чае на базе транзистора VT2 значительно уменьшается закрываю­щий сигнал. Транзистор VT2 открывается. В его коллекторе появ­ляется положительное напряжение, открывающее транзистор. Воз­никает лавинообразный процесс. Оба транзистора открыты. Цикл работы повторяется.

    Рис. 11.4

    Приведенные на схеме номиналы элементов формируют на вы­ходе сигнал с амплитудой больше 10 В и с частотой 50 Гц. Для регулирования амплитуды выходного сигнала и его линейности служат резисторы R7 и R8 соответственно. Резистор R1 меняет ча­стоту задающего генератора.

    Генератор двухполярного пилообразного сигнала. Генератор пилообразного сигнала с регулируемым наклоном (рис. 11.5) состо­ит из двух интегрирующих цепочек R5, С1 и R2, С2 и порогового элемента, построенного на транзисторах VT1 и VT2. При включении питания на базе транзистора VT2 возникает сигнал 10 В. По мере заряда конденсатора С1 напряжение уменьшается. В это время на­пряжение на базе транзистора VT1 увеличивается. На разных кон­цах потенциометра существуют сигналы с различными фронтами. Когда напряжение на базах транзисторов VT1 и VT2 сравняется, они откроются и произойдет разряд конденсаторов. После этого начнется новый цикл работы генератора. Наклон выходного пило­образного сигнала можно регулировать с помощью потенциометра в широких пределах.



    Рис. 11.5

    Рис. 11.6

    Управляемый генератор. Генератор пилообразного сигнала (рис. 11.6, а) построен по схеме интегратора с большой постоянной времени, которая определяется выражением т = h 21 Э C 1 R 4 где h 21э - коэффициент передачи тока транзистора VT1. Транзистор VT1 медленно открывается: конденсатор С1 включен в цепь ООС. Напряжение в цепи коллектора уменьшается. В некоторый момент открывается диод VD2 и шунтирует вход транзистора VT2. Тран­зистор VT2 закрывается. Для ускорения процесса закрывания в его коллектор включена динамическая нагрузка - транзистор VT3. Через эмиттер транзистора VT3 конденсатор С1 быстро заряжается. В ре­зультате обратный ход пилообразного сигнала сведен к минимуму. Его длительность составляет менее 5 икс. Длительность пилообраз­ного сигнала можно регулировать с помощью базового тока тран­зистора VT1 (рис. 11.6,6).

    Генератор пилообразного сигнала на интеграторе. В основу ге­нератора (рис. 11.7) положен интегратор на транзисторе. В качест­ве порогового и усилительного элементов используется интегральная микросхема К122УД1. Порог срабатывания микросхемы, равный 3 В, устанавливается делителем Rl, R2. При включении питания в коллекторе транзистора напряжение не может измениться скач­ком. Отрицательная обратная связь через конденсатор формирует на выходе линейно нарастающий сигнал. Постоянная времени равна т=h 21Э R 3 С 2 , где h 21Э - коэффициент передачи тока транзистора. Когда напряжение на коллекторе достигнет 3 В, интегральная мик­росхема переключится. Положительное напряжение на выводе 5 пройдет через диод и откроет транзистор. Произойдет разряд кон­денсатора С2. На коллекторе вновь появится нулевой потенциал.



    Рис. 11.7

    Схема начнет новый цикл работы. Схема с указанными номиналами элементов формирует выходной сигнал с амплитудой 3 В, частотой следования 100 Гц и длительностью заднего фронта 0,1 мс.

    Запускаемый генератор двухполярного сигнала. Для получения высоковольтного сигнала пилообразной формы в генераторе (рис. 11.8) применяют два каскада, на выходах которых формиру­ются падающий и нарастающий сигналы. Каждый каскад состоит из двух транзисторов. Транзисторы VT2 и VT4 являются сбрасыва­ющими, a VT1 и VT3 - активными элементами, в коллекторах ко­торых формируются выходные сигналы. После включения питания напряжение на коллекторе транзистора VT3 не может скачком из­мениться. Этому препятствует ООС через конденсатор С2. Напря­жение на коллекторе будет медленно нарастать. Скорость увеличе­ния напряжения определяется постоянной времени т=Л 2 1Э Cz(Ru-{- +Rт), где hzi Э - коэффициент передачи тока транзистора. Рези­стор R7 является ограничивающим. В другом каскаде в первый мо­мент появляется напряжение 100 В. Далее напряжение уменьшается и стремится к нулю. Сброс напряжения в коллекторе транзистора VT1 происходит в тот момент, когда приходит входной импульс. В это время открывается транзистор VT4. Импульсный сигнал с конденсатора С4 проходит на базу транзистора VT2 и открывает его. Происходит одновременный сброс конденсаторов С1 и С2.

    Рис. 11.8

    Генератор пилообразного сигнала с регулируемой линейностью. В основу генератора (рис. 11.9) положен принцип заряда конденсатора С2 стабилизированным током. Стабилизатор тока построен на транзисторе VT2. Сигнал с конденсатора С2 поступает на вход эмиттерного повторителя. При формировании пилообразного сигнала напряжение на конденсаторе увеличивается. Одновременно с повы­шением напряжения на конденсаторе увеличивается ток базы тран­зистора VT3. В результате конденсатор заряжается не постоянным током, как того требует линейное нарастание напряжения, а током, уменьшающимся во времени. На заряд конденсатора влияет входное сопротивление эмиттерного повторителя. Для получения пилообраз­ного напряжения необходимо скомпенсировать ток базы транзисто­ра. Этого можно достигнуть цепью ОС, связывающей эмиттеры тран­зисторов VT2 и VT3. С увеличением выходного сигнала эмиттерного повторителя увеличивается эмнттерный ток транзистора VT2. Меняя сопротивление резистора R9 в цепи ОС, мы можем добиться возра­стающей или убывающей формы выходного сигнала.

    Рис. 11.9

    Для разряда конденсатора в схеме применяется блокинг-генера-тор. Во время заряда конденсатора диод закрыт питающим напря­жением. Когда транзистор VT1 открыт, конденсатор С2 разряжает­ся через диод VD1. Амплитуда выходного сигнала регулируется ре­зистором R5, а частота - резистором R1. Максимальная амплитуда равна 15 В.

    УПРАВЛЯЕМЫЕ ГЕНЕРАТОРЫ

    Генератор на полевом транзисторе. В основу генератора (рис. 11.10) положен заряд конденсатора-постоянным током, кото­рый задается полевым транзистором VT4. Скорость заряда конден­сатора определяется резистором R10. Нарастающее напряжение подается на базу транзистора эмиттерного повторителя, выход ко­торого подключен к триггеру - транзисторы VT1 и VT2. Выходной сигнал триггера поступает на базу транзистора VT3 для сброса напряжения на конденсаторе.

    В исходном состоянии транзисторы VT2 и VT3 закрыты. Как только напряжение на конденсаторе достигнет б В, срабатывает триггер и открывается транзистор VT3. Конденсатор разряжается через открытый транзистор. При уменьшении напряжения на кон­денсаторе до 1 В триггер возвращается в исходное состояние. На­чинается новый цикл заряда конденсатора.

    Приведенные на схеме номиналы элементов позволяют регули­ровать частоту выходного сигнала от 15 до 30 кГц. Если поставить конденсатор емкостью 0,033 мкФ, то частота выходного сигнала рав­на 1 кГц.

    Рис. 11.10 Рис. 11.11

    Генератор сигнала треугольной формы на ОУ. В схеме рис. 11.11 на конденсаторе С формируется сигнал треугольной фор­мы с амплитудой 0,6 В. Заряд и разряд конденсатора осуществля­ются выходным сигналом ОУ, который автоматически меняется в тот момент, когда напряжение на конденсаторе достигает порога открывания. Порог открывания устанавливается делителем R2 и R3. Частота следования выходного сигнала определяется выражени­ем f=l/4R 1 C. Для выравнивания наклонов фронта и спада выход­ного сигнала служит резистор R6.

    Формирователь треугольного сигнала. Формирователь рис. 11.12 позволяет получить на выходе сигнал треугольной формы. Амплиту­да сигнала достигает 90% напряжения питания при достаточно вы­сокой линейности фронтов.

    В основу формирователя положен принцип заряда и разряда конденсатора через генераторы тока, построенные на транзисторах. Коллекторные токи транзисторов определяются опорными напряже­ниями стабилитронов и эмиттерными резисторами. При отсутствии входного сигнала через транзисторы должны протекать равные токи. Если равенство токов не выполняется из-за разброса номиналов стабилитронов и резисторов, то следует подстроить резистор R4. Появление входного сигнала с амплитудой больше напряжения про­боя стабилитронов вызовет разбаланс коллекторных токов. Поло­жительная полуволна входного сигнала уменьшит ток транзистора VT2. Ток транзистора VT1 останется без изменения. Разностный коллекторный ток будет заряжать конденсатор. С приходом отри­цательной полуволны уменьшится коллекторный ток транзистора VT1. Ток транзистора VT2 установится номинальным. Конденсатор будет разряжаться током транзистора VT2. Если амплитуда вход­ного сигнала меньше напряжения питания, то наблюдается прямая зависимость между амплитудами входного и выходного сигналов, а если больше напряжения питания, то амплитуда выходного сиг­нала постоянна.

    Емкость конденсатора рассчитывается по формуле С= 10 3 I/2fU m ах (мкФ), где I - ток транзистора; f - частота вход­ного сигнала; U max - амплитуда выходного сигнала.

    Рис. 11.12 Рис. 11.13 Рис. 11.14

    Рис. 11.15

    Широкодиапазонный генератор сигнала треугольной формы. Ге­нератор сигнала треугольной формы (рис. 11.13) позволяет полу­чить частоту от 0,01 Гц до 0,1 МГц. Выходной сигнал 20 В формируeтся на конденсаторе С4 коллекторными токами транзисторов VT4, VT6. При заряде конденсатора транзисторы VT4 и VT5 откры­ты, а транзисторы VT3 и VT6 закрыты. Когда напряжение на кон-денсаторе возрастет до уровня, определяемого делителем R1 - R3 транзистор VT1 откроется. Следом за ним откроются транзисторы VT3 и VT6, которые закрывают транзисторы VT4 и VT5 Начнется процесс разряда конденсатора через транзистор VT6 По достиже­нии нижнего уровня откроется транзистор VT2. Этот процесс воз-вращает схему в первоначальное состояние. Вновь начинается заряд конденсатора. Частота выходного сигнала может линейно меняться с помощью резистора R5 с перекрытием в 20 раз. Для конденсатора емкостью 1 нФ и при R5 = 510 кОм частота равна 001 Гц

    Формирователь ступенчатого сигнала. В исходном состоянии (рис. 11 14) конденсатор заряжен до напряжения питания Все тран­зисторы закрыты. Входной импульс положительной полярности от­крывает транзистор VT1. Через этот транзистор протекает ток ко­торый разряжает конденсатор. Напряжение на конденсаторе умень­шается. Второй входной импульс также разрядит конденсатор на дискретное значение напряжения. В результате этого каждый им­пульс будет ступеньками уменьшать напряжение на конденсаторе Как только напряжение на конденсаторе сравняется с напряжением на делителе R4, R5, открывается транзистор VT2 и наступает ре­лаксационный процесс в составном каскаде. Транзисторы VT2 и VT3 открываются. Происходит процесс заряда конденсатора После этого начинается новый цикл разряда конденсатора.

    Генератор трапецеидального сигнала с регулируемой длитель­ностью фронта. В основу генератора (рис. 11.15) положен мульти­вибратор который управляет работой токозадающих транзисторов VT3 и VT4. Когда транзистор VT2 открыт, через транзистор VT3 протекает зарядный ток конденсатора СЗ. Скорость нарастания на­пряжения на конденсаторе (или фронт выходного сигнала) зависит от зарядного тока, который регулируется резистором R12 Макси­мальное напряжение на конденсаторе ограничено стабилитроном VD2. При переключении транзисторов мультивибратора в другое состояние начинается процесс разряда конденсатора. Транзистор VT3 закрывается, а транзистор VT4 открывается. Разрядный ток транзистора VT4 регулируется с помощью резистора R15. Значение этого тока определяет спад выходного сигнала. Частота и скваж­ность выходного сигнала регулируются резисторами R2 и R4. Гене­ратор может работать в широком диапазоне частот, вплоть до 1 МГц. При больших изменениях частоты выходного сигнала необ­ходимо менять номиналы емкостей конденсаторов С1 и С2.

    ГЕНЕРАТОРЫ НА ОУ

    Управляемый генератор сигнала пилообразной формы. Ге­нератор (рис. 11.16) состоит из порогового устройства и интегра­тора. Выходное напряжение отрицательной полярности порогового устройства, построенного на ОУ DA1, подается на вход интегратора. Конденсатор С, включенный в цепь ООС, постепенно заряжается. На выходе ОУ DA2 формируется линейно нарастающий сигнал. Когда на неинвертирующем входе ОУ DA1 будет нулевой потенци­ал, произойдет ее переключение. Выходной сигнал положительной полярности проходит через диод и разряжает конденсатор. Когда конденсатор полностью разрядится, ОУ DA1 вновь вернется в ис­ходное состояние и начнется новый цикл формирования выходного сигнала. Частота следования выходного сигнала определяется вы­ражением f = 3/C(R 3 + R 4).

    Генератор на ОУ К153УД1. Генератор треугольных импульсов (рис. 11.17, а) построен на двух ОУ. Первый ОУ выполняет функции интегратора, а второй является пороговым элементом. Напряжение на выходе ОУ DA1 линейно возрастает (убывает). Когда оно срав­няется по абсолютному значению с выходным напряжением ОУ DA2, переключится второй ОУ и на делителе R5, R6 изменится полярность напряжения. В этом случае выходной сигнал ОУ DA1 будет линейно убывать (возрастать). В последующий момент про­изойдет сравнение выходного сигнала ОУ DA1 с порогом закрыва­ния ОУ DA2. Произойдет вторичное переключение ОУ DA2. Зави­симость периода сигнала треугольной формы от коэффициента передачи ОУ DA2 показана на рис. 11.17,6.

    Генератор на однопереходном транзисторе с усилителем. Гене­ратор пилообразного сигнала (рис. 11.18, а) построен на ОУ, кото­рый выполняет функции интегратора. Скорость нарастания выход­ного сигнала зависит от входного напряжения. Когда напряжение на выходе ОУ достигнет 8 В, открывается однопереходный транзи­стор. Положительный импульс на резисторе R2 проходит через диод, и разряжается интегрирующий конденсатор. Зависимость ча­стоты выходного сигнала от на­пряжения на входе показана на рис. 11.18, б.

    Рис. 11.16 Рис. 11.17

    Генератор с двойной ПОС. Ге­нератор (рис. 11.19, а) состоит из интегратора, выполненного на ОУ DA2. Когда ОУ DA2 переключа­ется, на его неинвертирующий вход подается напряжение ПОС, которое определяет порог срабатывания схемы. С потенциометра R4 на неинвертирующий вход ОУ DA1 действует вторая ПОС. Если величина этой связи меньше порога открывания ОУ DA2, то передний фронт импульсного сигнала на выходе ОУ DA1 пройдет через конденсатор С1 на инвертирующий его вход. С этого момента начинается про­цесс заряда конденсатора С1. Напряжение на выходе ОУ DA1 мед­ленно увеличивается. Когда оно достигнет порога открывания ОУ DA2, происходит переключение ОУ DA2. Начинается процесс разряда конденсатора С1. Частота следования импульсов выходно­го сигнала определяется выражением f=K 2 /4RC(K 1 -K 2);

    Рис. 11.18

    Рис. 11.19

    Рис. 11.20

    K 1 = R 2 /(R 2 +R 3); K 2 = R" 4 /(R" 4 +R" 4). В зависимости от уровня сиг­нала ПОС в ОУ DA1 можно регулировать ступеньку выходного сигнала. Максимальное значение, ДE определяется напряжением на делителе R2, R3. На рис. 11.19,6 приведены эпюры напряжения в гонках схемы.

    Запускаемый генератор сигнала. Выходное напряжение (рис. 11.20, а), формируемое на конденсаторе СЗ, равно U 3 = = (t/C 3)I 2 . Конденсатор заряжается линейно возрастающим током I 2 = U 2 /R 5 транзистора VT2. Управление коллекторным током тран­зистора VT2 осуществляется напряжением на конденсаторе С2 (U 2 = (t/С 2)I 3). Это напряжение зависит от тока транзистора VT3 (l 3 =U Б /R 4). В результате U 3 = U б t 2 /C 2 C 3 R 4 R 5 . Для указанных на схеме номиналов элементов частота выходного сигнала равна 5 кГц. Сброс конденсаторов С2 и СЗ осуществляется внешним сиг­налом через транзисторы VT4 и VT1. На рис. 11.20,6 приведены эпюры напряжения в разных точках схемы.

    Формирователь сигнала вида sec x . Формирование функции secx осуществляется от входного гармонического сигнала. Схема (рис. 11.21, а) может работать от единиц герц до сотен килогерц. В первом транзисторе происходит ограничение входного сигнала с амплитудой 2,5 В. Второй транзистор увеличивает крутизну фронтов прямоугольного сигнала и меняет его фазу. Сигнал на коллекторе транзистора VT2 суммируется с входным сигналом на резисторе R6. Выходной сигнал выбирается в определенной точке потенциометра так, чтобы можно было установить определенное значение глубины впадины функции sec я. Следует заметить, что эта схема формирования может давать погрешность в некоторых точках до 10%. При увеличении амплитуд меандрового и гармонического сиг­налов погрешность уменьшается. Для увеличения точности форми­рования функции sec а; можно поставить на входе схему диодного ограничения (рис. 11.21,6). Роль этой схемы заключается в том, чтобы сгладить вершины гармонического сигнала. С пом-ощью до­полнительной схемы точность моделирования может быть повыше­на до 5%.

    Рис. 11.21

    ГЕНЕРАТОРЫ СЛОЖНЫХ СИГНАЛОВ

    Диодный генератор сложных сигналов. Сигналы сложной формы образуются (рис. 11.22) в результате изменения коэффици­ента усиления дифференциального усилителя. При малых входных сигналах все диоды закрыты. Коэффициент усиления, определяемый резисторами R2, R3 и R11, R12, близок к единице. С увеличением уровня входного сигнала начинают проводить диоды в эмиттерных цепях транзисторов. Это приводит к увеличению коэффициента уси­ления. Выходной сигнал становится более крутым. Три уровня из­менения коэффициента усиления используются как для положитель­ной, так и для отрицательной полярностей входного сигнала. Каждая цепь, состоящая из диодов и потенциометра, определяет разный порог открывания. Точная форма выходного сигнала под­страивается соответствующим потенциометром.

    Дискретный формирователь сигналов специальных форм. В ос­нове генератора (рис. 11.23) лежит многофазный мультивибратор, который запускается импульсом положительной полярности. В схе­ме поочередно будут открываться транзисторы VT3. В открытом состоянии находится лишь один транзистор. В проводящее состоя­ние перейдет транзистор VT2, который в эмиттер транзистора VT1 направит ток, определяемый рези­стором R5. Если сопротивления резисторов меняются по опреде­ленному закону, то амплитуда выходного сигнала меняется по этому же закону. С помощью ре­зисторов R5 можно получить лю­бой закон изменения выходного сигнала. Частота переключения каналов определяется постоянной времени R 6 C 2 .

    Рис. 11.22 Рис. 11.23

    Рис. 11.24

    Генератор функций. На вход генератора (рис. 11.24) подается импульсный сигнал положительной полярности. Логическая схема 2И - НЕ интегральной микросхе­мы К133ЛАЗ закрывается. На вы­ходе 1 появляется сигнал отрица­тельной полярности с длитель­ностью, равной длительности вход­ного сигнала. Этот сигнал на RС-цепочке дифференцируется, и положительный импульс закрывает вторую логическую схему. На выходе этой схемы появляется импульс отрицательной полярности длительностью 5 мкс. Все последующие цепочки работают аналогичным образом. На выходах 1 - 7 последовательно друг за другом воз­никают импульсные сигналы. Все эти сигналы суммируются через определенные весовые резисторы на входе ОУ. В зависимости от по­следовательности принятых сопротивлений весовых резисторов на выходе ОУ можно сформировать сигнал любой сложности. Амплиту­да выходного сигнала определяется сопротивлением резистора R4. Для балансировки ОУ сопротивление резистора R3 подбирается под суммарное сопротивление весовых резисторов.

  • Понравилась статья? Поделитесь ей
    Наверх